ADAM12 is a costimulatory molecule that determines Th1 cell fate and mediates tissue inflammation.

Cell Mol Immunol

Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark.

Published: August 2021

AI Article Synopsis

  • ADAM12 is identified as a costimulatory molecule that enhances T-cell activation, specifically promoting T-helper 1 (Th1) cell proliferation and function.
  • In the absence of ADAM12, Th1 cells show reduced production of key inflammatory markers like IFNγ, while other T cell types remain unaffected.
  • Genetic loss of ADAM12 significantly reduces neuroinflammation in a model related to multiple sclerosis, suggesting it could be a therapeutic target for Th1-mediated inflammatory diseases.

Article Abstract

A disintegrin and metalloproteinase (ADAM)12 was previously found to be expressed in T cells in the inflamed brain. However, the function of ADAM12 in T-cell responses in general and in tissue inflammation has not been examined. Here, we studied the role of ADAM12 in T-cell responses, fate determination on activation, and its functions in T cells to mediate tissue inflammation. We identified ADAM12 as a costimulatory molecule that is expressed on naive T cells and downregulated on stimulation. ADAM12 mimics CD28 costimulatory signaling to activate and induce the proliferation of T-helper 1 (Th1) cells. Monoclonal ADAM12 Fab antibodies trigger T-cell activation by amplifying TCR signaling to stimulate T-bet-mediated IFNγ production. Lack of genomic ADAM12 and its knockdown in T cells diminished T-bet and IFNγ production in Th1 cells, whereas other T cells, including Th17 cells, were unaffected. ADAM12 had similar functions in vivo on myelin antigen (MOG)-induced T-cell activation. We found that genetic loss of ADAM12 profoundly alleviated Th1-mediated neuroinflammation and thus disease severity in experimental autoimmune encephalomyelitis, a model of multiple sclerosis. Transcriptomic profiling of MOG-specific ADAM12 T cells revealed differentially expressed genes that are important for T-cell activation, proliferation, and costimulatory signaling and Th1 pathogenicity, consistent with their inability to cause T-cell-mediated skin inflammation in a model of adoptive delayed-type hypersensitivity. We conclude that ADAM12 is a T-cell costimulatory molecule that contributes to the pathogenesis of tissue inflammation and a potential target for the treatment of Th1-mediated diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8322154PMC
http://dx.doi.org/10.1038/s41423-020-0486-8DOI Listing

Publication Analysis

Top Keywords

tissue inflammation
16
adam12
12
costimulatory molecule
12
adam12 t-cell
12
t-cell activation
12
cells
9
adam12 costimulatory
8
t-cell responses
8
costimulatory signaling
8
th1 cells
8

Similar Publications

Cell-cell crosstalk in the pathogenesis of acute lung injury and acute respiratory distress syndrome.

Tissue Barriers

January 2025

Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China.

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe inflammatory condition of the respiratory system, associated with high morbidity and mortality. This study investigates the therapeutic potential of tocilizumab (TZ), an IL-6 receptor inhibitor, in mitigating lipopolysaccharide (LPS)-induced ALI by modulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. An ALI model was established using LPS induction.

View Article and Find Full Text PDF

Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.

View Article and Find Full Text PDF

Non-communicable diseases (NCD) are associated with inflammation and oxidative stress which is further associated with omega-6 (ω6) and omega-3 (ω3) fatty acid (FA) imbalance favoring ω6 FA. By improving ω3 FA consumption, this imbalance can be altered to control NCD. Previously we have reported blends of flaxseed oil (FSO, ω3 FA) with palm olein (PO) or coconut oil (CO) were thermo-oxidatively stable with good storage stability and could improve ω6:ω3 ratio in cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!