Photonic reservoir computing is an emergent technology toward beyond-Neumann computing. Although photonic reservoir computing provides superior performance in environments whose characteristics are coincident with the training datasets for the reservoir, the performance is significantly degraded if these characteristics deviate from the original knowledge used in the training phase. Here, we propose a scheme of adaptive model selection in photonic reservoir computing using reinforcement learning. In this scheme, a temporal waveform is generated by different dynamic source models that change over time. The system autonomously identifies the best source model for the task of time series prediction using photonic reservoir computing and reinforcement learning. We prepare two types of output weights for the source models, and the system adaptively selected the correct model using reinforcement learning, where the prediction errors are associated with rewards. We succeed in adaptive model selection when the source signal is temporally mixed, having originally been generated by two different dynamic system models, as well as when the signal is a mixture from the same model but with different parameter values. This study paves the way for autonomous behavior in photonic artificial intelligence and could lead to new applications in load forecasting and multi-objective control, where frequent environment changes are expected.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308406 | PMC |
http://dx.doi.org/10.1038/s41598-020-66441-8 | DOI Listing |
Nat Commun
December 2024
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
Reservoir computing (RC) is a powerful machine learning algorithm for information processing. Despite numerous optical implementations, its speed and scalability remain limited by the need to establish recurrent connections and achieve efficient optical nonlinearities. This work proposes a streamlined photonic RC design based on a new paradigm, called next-generation RC, which overcomes these limitations.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
December 2024
Institute for Cross-Disciplinary Physics and Complex Systems (IFISC) UIB-CSIC, Campus Universitat Illes Balears, Palma de Mallorca 07122, Spain.
Quantum optical networks are instrumental in addressing the fundamental questions and enable applications ranging from communication to computation and, more recently, machine learning (ML). In particular, photonic artificial neural networks (ANNs) offer the opportunity to exploit the advantages of both classical and quantum optics. Photonic neuro-inspired computation and ML have been successfully demonstrated in classical settings, while quantum optical networks have triggered breakthrough applications such as teleportation, quantum key distribution and quantum computing.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350116, China.
The rise of big data and the internet of things has driven the demand for multimodal sensing and high-efficiency low-latency processing. Inspired by the human sensory system, we present a multifunctional optoelectronic-memristor-based reservoir computing (OM-RC) system by utilizing a CuSCN/PbS quantum dots (QDs) heterojunction. The OM-RC system exhibits volatile and nonlinear responses to electrical signals and wide-spectrum optical stimuli covering ultraviolet, visible, and near-infrared (NIR) regions, enabling multitask processing of dynamic signals.
View Article and Find Full Text PDFMalar J
December 2024
Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
Background: Malaria poses a significant public health threat globally, particularly in African regions, where asymptomatic malaria is a considerable logistic problem. Individuals with asymptomatic malaria do not seek treatment, and thus they are invisible to health facilities and represent a substantial hidden reservoir of Plasmodium species. This study aimed to determine the prevalence of asymptomatic malaria and its associated factors in Gorgora, western Dembia district, Northwest Ethiopia.
View Article and Find Full Text PDFNanophotonics
April 2024
State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China.
Photonic reservoir computing (RC) is a simple and efficient neuromorphic computing framework for human cortical circuits, which is featured with fast training speed and low training cost. Photonic time delay RC, as a simple hardware implementation method of RC, has attracted widespread attention. In this paper, we present and experimentally demonstrate a time delay RC system based on a Fabry Perot (FP) laser for multiple tasks processing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!