The eukaryotic leading strand DNA polymerase (Pol) ε contains 4 subunits, Pol2, Dpb2, Dpb3 and Dpb4. Pol2 is a fusion of two B-family Pols; the N-terminal Pol module is catalytic and the C-terminal Pol module is non-catalytic. Despite extensive efforts, there is no atomic structure for Pol ε holoenzyme, critical to understanding how DNA synthesis is coordinated with unwinding and the DNA path through the CMG helicase-Pol ε-PCNA clamp. We show here a 3.5-Å cryo-EM structure of yeast Pol ε revealing that the Dpb3-Dpb4 subunits bridge the two DNA Pol modules of Pol2, holding them rigid. This information enabled an atomic model of the leading strand replisome. Interestingly, the model suggests that an OB fold in Dbp2 directs leading ssDNA from CMG to the Pol ε active site. These results complete the DNA path from entry of parental DNA into CMG to exit of daughter DNA from PCNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308368PMC
http://dx.doi.org/10.1038/s41467-020-16910-5DOI Listing

Publication Analysis

Top Keywords

leading strand
12
atomic model
8
model leading
8
strand replisome
8
pol module
8
dna path
8
dna
7
pol
7
structure polymerase
4
polymerase holoenzyme
4

Similar Publications

Misfolding of the cellular PrP (PrP) protein causes prion disease, leading to neurodegenerative disorders in numerous mammalian species, including goats. A lack of PrP induces complete resistance to prion disease. The aim of this work was to engineer Alpine goats carrying knockout (KO) alleles of PRNP, the PrP-encoding gene, using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides.

View Article and Find Full Text PDF

RNA recognition motifs (RRMs) are a key class of proteins that primarily bind single-stranded RNAs. In this study, we applied standard atomistic molecular dynamics simulations to obtain insights into the intricate binding dynamics between uridine-rich RNAs and TbRGG2 RRM using the recently developed OL3-Stafix AMBER force field, which improves the description of single-stranded RNA molecules. Complementing structural experiments that unveil a primary binding mode with a single uridine bound, our simulations uncover two supplementary binding modes in which adjacent nucleotides encroach upon the binding pocket.

View Article and Find Full Text PDF

Defects in DNA single-strand break repair are associated with neurodevelopmental and neurodegenerative disorders. One such disorder is that resulting from mutations in , a scaffold protein that plays a central role in DNA single-strand base repair. XRCC1 is recruited at sites of single-strand breaks by PARP1, a protein that detects and is activated by such breaks and is negatively regulated by XRCC1 to prevent excessive PARP binding and activity.

View Article and Find Full Text PDF

: Accurate tumor detection and quantification are important for optimized therapy planning and evaluation. Total tumor burden is also an appealing biomarker for clinical trials. Manual examination and annotation of oncologic PET/CT is labor-intensive and demands a high level of expertise.

View Article and Find Full Text PDF

Self-assembly of nanoparticles (NPs) in solution has garnered tremendous attention among researchers because of their electrical, chemical, and optoelectronic properties at the macroscale with potential applications in bio-imaging, bio-medicine, and therapeutics. Control of size, shape, and composition at the nanoscale is important in tuning the material's bulk properties. The grafting of NPs with polymers enables us to tune such bulk material properties at the nano level by controlling their assemblies, especially in solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!