An orthogonal aminoacyl-tRNA synthetase/tRNA pair is a crucial prerequisite for site-specific incorporation of unnatural amino acids. Due to its high codon suppression efficiency and full orthogonality, the pyrrolysyl-tRNA synthetase/pyrrolysyl-tRNA pair is currently the ideal system for genetic code expansion in both eukaryotes and prokaryotes. There is a pressing need to discover or engineer other fully orthogonal translation systems. Here, through rational chimera design by transplanting the key orthogonal components from the pyrrolysine system, we create multiple chimeric tRNA synthetase/chimeric tRNA pairs, including chimera histidine, phenylalanine, and alanine systems. We further show that these engineered chimeric systems are orthogonal and highly efficient with comparable flexibility to the pyrrolysine system. Besides, the chimera phenylalanine system can incorporate a group of phenylalanine, tyrosine, and tryptophan analogues efficiently in both E. coli and mammalian cells. These aromatic amino acids analogous exhibit unique properties and characteristics, including fluorescence, post-translation modification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308279PMC
http://dx.doi.org/10.1038/s41467-020-16898-yDOI Listing

Publication Analysis

Top Keywords

synthetase/trna pairs
8
genetic code
8
code expansion
8
amino acids
8
pyrrolysine system
8
chimeric design
4
design pyrrolysyl-trna
4
pyrrolysyl-trna synthetase/trna
4
pairs canonical
4
canonical synthetase/trna
4

Similar Publications

Site-specific incorporation of noncanonical amino acids (ncAAs) into proteins in eukaryotes has predominantly relied on the pyrrolysyl-tRNA synthetase/tRNA pair. However, access to additional easily engineered pairs is crucial for expanding the structural diversity of the ncAA toolbox in eukaryotes. The Escherichia coli-derived leucyl-tRNA synthetase (EcLeuRS)/tRNA pair presents a particularly promising alternative.

View Article and Find Full Text PDF

Site-specific incorporation of noncanonical amino acids (ncAAs) into proteins in eukaryotes has predominantly relied on the pyrrolysyl-tRNA synthetase/tRNA pair. However, access to additional easily engineered pairs is crucial for expanding the structural diversity of the ncAA toolbox in eukaryotes. The -derived leucyl-tRNA synthetase (EcLeuRS)/tRNA pair presents a particularly promising alternative.

View Article and Find Full Text PDF

Tuning the Functionality of Designer Translating Organelles with Orthogonal tRNA Synthetase/tRNA Pairs.

J Mol Biol

November 2024

Biocenter, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany. Electronic address:

Site-specific incorporation of noncanonical amino acids (ncAAs) can be realized by genetic code expansion (GCE) technology. Different orthogonal tRNA synthetase/tRNA (RS/tRNA) pairs have been developed to introduce a ncAA at the desired site, delivering a wide variety of functionalities that can be installed into selected proteins. Cytoplasmic expression of RS/tRNA pairs can cause a problem with background ncAA incorporation into host proteins.

View Article and Find Full Text PDF

Biosynthesis of Halogenated Tryptophans for Protein Engineering Using Genetic Code Expansion.

Chembiochem

October 2024

Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A.

Genetic Code Expansion technology offers significant potential in incorporating noncanonical amino acids into proteins at precise locations, allowing for the modulation of protein structures and functions. However, this technology is often limited by the need for costly and challenging-to-synthesize external noncanonical amino acid sources. In this study, we address this limitation by developing autonomous cells capable of biosynthesizing halogenated tryptophan derivatives and introducing them into proteins using Genetic Code Expansion technology.

View Article and Find Full Text PDF

Site-specific noncanonical amino acid (ncAA) mutagenesis in living cells has traditionally relied on heterologous, nonsense-suppressing aminoacyl-tRNA synthetase (aaRS)/tRNA pairs that do not cross-react with their endogenous counterparts. Such heterologous pairs often perform suboptimally in a foreign host cell since they were not evolutionarily optimized to function in the foreign environment. This suboptimal performance restricts the number of ncAAs that can be simultaneously incorporated into a protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!