Mechanisms regulating nuclear organization control fundamental cellular processes, including the cell and chromatin organization. Their disorganization, including aberrant nuclear architecture, has been often implicated in cellular transformation. Here, we identify Lamin A, among proteins essential for nuclear architecture, as SPANX (sperm protein associated with the nucleus on the X chromosome), a cancer testis antigen previously linked to invasive tumor phenotypes, interacting protein in melanoma. SPANX interaction with Lamin A was mapped to the immunoglobulin fold-like domain, a region critical for Lamin A function, which is often mutated in laminopathies. SPANX downregulation in melanoma cell lines perturbed nuclear organization, decreased cell viability, and promoted senescence-associated phenotypes. Moreover, SPANX knockdown (KD) in melanoma cells promoted proliferation arrest, a phenotype mediated in part by IRF3/IL1A signaling. SPANX KD in melanoma cells also prompted the secretion of IL1A, which attenuated the proliferation of naïve melanoma cells. Identification of SPANX as a nuclear architecture complex component provides an unexpected insight into the regulation of Lamin A and its importance in melanoma. IMPLICATIONS: SPANX, a testis protein, interacts with LMNA and controls nuclear architecture and melanoma growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7541784 | PMC |
http://dx.doi.org/10.1158/1541-7786.MCR-20-0291 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Institute of Science and Technology Austria, Klosterneuburg AT-3400, Austria.
Many biological systems operate near the physical limits to their performance, suggesting that aspects of their behavior and underlying mechanisms could be derived from optimization principles. However, such principles have often been applied only in simplified models. Here, we explore a detailed mechanistic model of the gap gene network in the embryo, optimizing its 50+ parameters to maximize the information that gene expression levels provide about nuclear positions.
View Article and Find Full Text PDFHistochem Cell Biol
January 2025
Departamento de Diagnóstico en Patología y Medicina Oral, Facultad de Odontología, Universidad de La República, General Las Heras 1925, Montevideo, Uruguay.
The tumor microenvironment is an altered milieu that imposes multiple selective pressures leading to the survival and dissemination of aggressive and fit tumor cell subpopulations. How pre-tumoral and tumoral cells respond to changes in their microenvironment will determine the subsequent evolution of the tumor. In this study, we have subjected pre-tumoral and tumoral cells to coverslip-induced hypoxia, which recapitulates the intracellular hypoxia and extracellular acidification characteristic of the early tumor microenvironment, and we have used a combination of quantitative phase microscopy and epifluorescence to analyze diverse cellular responses to this altered environment.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil Engineering and Architecture, Guizhou Minzu University, Guiyang, China.
The application of sand-clay mixtures is diverse in contemporary engineering practices, with particular emphasis on their shear strength characteristics. This study focused on the estimation of the shear strength of sand-clay mixtures using the artificial neural network (ANN) and low-field nuclear magnetic resonance (NMR) spectroscopy. In this study, NMR tests and triaxial compression tests were carried out on 160 artificial sand-clay mixtures with different mineralogical compositions, water contents, and dry densities in the laboratory to obtain the T spectra and shear strength indices, respectively.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Science (NIAB-C, PIEAS), Faisalabad, Pakistan.
Accessing the underlying genetics of complex traits, especially in small grain pulses is an important breeding objective for crop improvement. Genome-wide association studies (GWAS) analyze thousands of genetic variants across several genomes to identify links with specific traits. This approach has discovered many strong associations between genes and traits, and the number of associated variants is expected to continue to increase as GWAS sample sizes increase.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russian Federation; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russian Federation. Electronic address:
Ferritin-based hybrids are large 24-subunit macromolecules of megadalton scale have prospective applications ranging from drug delivery to recombinant vaccines, however, their rational design is challenging. Here, we architectured hybrids based on ferritin subunits from Helicobacter pylori and ones fused with a homolog of the Small Ubiquitin-like Modifier protein. We firstly revealed the stochastic nature of bacterial ferritin-based hybrids self-assembly by observing a sequential range of stoichiometries at totally different sample preparation procedures: coexpression in Escherichia coli cells and pH-dependent dis/reassembly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!