Right, left and cilia: How asymmetry is established.

Semin Cell Dev Biol

MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK. Electronic address:

Published: February 2021

The initial breaking of left-right (L-R) symmetry in the embryo is controlled by a motile-cilia-driven leftward fluid flow in the left-right organiser (LRO), resulting in L-R asymmetric gene expression flanking the LRO. Ultimately this results in left- but not right-sided activation of the Nodal-Pitx2 pathway in more lateral tissues. While aspects of the initial breaking event clearly vary between vertebrates, events in the Lateral Plate Mesoderm (LPM) are conserved through the vertebrate lineage. Evidence from model systems and humans highlights the role of cilia both in the initial symmetry breaking and in the ability of more lateral tissues to exhibit asymmetric gene expression. In this review we concentrate on the process of L-R determination in mouse and humans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcdb.2020.06.003DOI Listing

Publication Analysis

Top Keywords

initial breaking
8
asymmetric gene
8
gene expression
8
lateral tissues
8
left cilia
4
cilia asymmetry
4
asymmetry established
4
established initial
4
breaking left-right
4
left-right l-r
4

Similar Publications

Tumor Treating Fields (TTFields) has emerged as a significant adjunctive component in the treatment of high-grade gliomas following the EF-14 trial in 2017. The incorporation of TTFields, alongside cyclic temozolomide therapy, has demonstrated improved patient outcomes when the usage exceeds 18 h per day (75% usage). analysis of the EF-14 trial has demonstrated that therapy usage exceeding 90% is associated with an additional benefit, while rates above 50% have also proven effective in literature.

View Article and Find Full Text PDF

Maximizing saccharification efficiency of lignocellulose and minimizing the production costs associated with enzyme requirements are crucial for sustainable biofuel production. This study presents a novel semi-fed-batch saccharification method that uses a co-culture of and strain A9 to efficiently break down high solid-loading lignocellulosic biomass without the need for any external enzymes. This method optimizes saccharification efficiency and enhances glucose production from alkaline-treated rice straw, a representative lignocellulosic biomass.

View Article and Find Full Text PDF

Obesity is a modifiable risk factor for breast cancer. Yet, how obesity contributes to cancer initiation is not fully understood. The goal of this study was to determine if the body mass index (BMI) and metabolic hallmarks of obesity are related to DNA damage in normal breast tissue.

View Article and Find Full Text PDF

Telomeres are hypersensitive to the formation of the common oxidative lesion 8-oxoguanine (8oxoG), which impacts telomere stability and function. OGG1 and MUTYH glycosylases initiate base excision repair (BER) to remove 8oxoG or prevent mutation. Here, we show OGG1 loss or inhibition, or MUTYH loss, partially rescues telomeric 8oxoG-induced premature senescence and associated proinflammatory responses, while loss of both glycosylases causes a near complete rescue in human fibroblasts.

View Article and Find Full Text PDF

Implantable Microneedles Loaded with Nanoparticles Surface Engineered for Efficient Eradication of Triple-Negative Breast Cancer Stem Cells.

Nano Lett

January 2025

School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China.

Eliminating cancer stem cells (CSCs) is essential for the effective treatment of triple-negative breast cancer (TNBC). This study synthesized Au@cerium-zinc composite core@shell nanoparticles (Au@Zn/CeO) that were subsequently conjugated with () to create the engineered bacterium AZCE, which was then combined with microneedle carriers and freeze-dried to obtain AZCE-MN. Upon implantation into TNBC tumors, the inherent properties of facilitate AZCE to penetrate the extracellular matrix and break through the basement membrane, enabling effective delivery of AZC to CSCs-enriched regions deep within the tumor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!