Crassaminicella sp. strain SY095 is an anaerobic mesophilic marine bacterium that was recently isolated from a deep-sea hydrothermal vent on the Southwest Indian Ridge. Here, we present the complete genome sequence of strain SY095. The genome consists of a chromosome of 3,046,753 bp (G + C content of 30.81%) and a plasmid of 36,627 bp (G + C content of 31.29%), encodes 2966 protein, 135 tRNA genes, and 34 rRNA genes. Numerous genes are related to peptide transport, amino acid metabolism, motility, and sporulation. This agrees with the observation that strain SY095 is a spore-forming, motile, and chemoheterotrophic bacterium. Further, the genome harbors multiple prophages that carry all the genes necessary for viral particle synthesis. Some prophages carry additional genes that may be involved in the regulation of sporulation. This is the first reported genome of a bacterium from the genus Crassaminicella, providing insights into the microbial adaptation strategies to the deep-sea hydrothermal vent environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.margen.2019.100733 | DOI Listing |
Mar Drugs
December 2024
Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France.
Sulfation plays a critical role in the biosynthesis of small molecules, regulatory mechanisms such as hormone signaling, and detoxification processes (phase II enzymes). The sulfation reaction is catalyzed by a broad family of enzymes known as sulfotransferases (SULTs), which have been extensively studied in animals due to their medical importance, but also in plant key processes. Despite the identification of some sulfated metabolites in fungi, the mechanisms underlying fungal sulfation remain largely unknown.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
National Center for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, India.
Deep sea microbial communities play a significant role in global biogeochemical processes. However, the depth-wise metabolic potential of microbial communities in hydrothermally influenced Central Indian Ridge (CIR) and Southwest Indian Ridge (SWIR) remains elusive. In this study, a comprehensive functional microarray-based approach was used to understand factors influencing the metabolic potential of microbial communities and depth-driven differences in microbial functional gene composition in CIR and SWIR.
View Article and Find Full Text PDFZool Stud
September 2024
German Centre for Marine Biodiversity Research (DZMB), c/o Biozentrum Grindel, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany. E-mail: (Neuhaus) ; (Brix).
Confined by the Mid-Atlantic Ridge and the European continental shelf, the deep-sea acorn barnacle (Hoek, 1883) lives in the northeast Atlantic deep sea, where it has been frequently reported in high current areas. Cemented to a solid substrate during its entire adult life, the species can only disperse by means of planktotrophic nauplius larvae. This study reports on the occurrence, ecology and genetic connectivity of from four sites within the northeastern Iceland Basin and presents the first record of the species living affiliated with hydrothermal vent field on the Reykjanes Ridge axis.
View Article and Find Full Text PDFFront Hum Neurosci
November 2024
The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.
Heliyon
November 2024
BGI Research, Qingdao, 266555, China.
Sediment plays a pivotal role in deep-sea ecosystems by providing habitats for a diverse range of microorganisms and facilitates the cycling processes of carbon, sulfur and nitrogen. Beyond the normal seafloor (NS), distinctive geographical features such as cold seeps (CS) and hydrothermal vent (HV) are recognized as life oases harboring highly diverse microbial communities. A global atlas of microorganisms can reveal the notable association between geological processes and microbial colonization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!