Background: The Saccharomyces cerevisiae Snf1 complex is a member of the AMP-activated protein kinase family and plays an important role in response to environmental stress. The α catalytic subunit Snf1 regulates the activity of the protein kinase, while the β regulatory subunits Sip1/Sip2/Gal83 specify substrate preferences and stress response capacities of Snf1. In this study, we aim to investigate the effects of SNF1 overexpression on the cell tolerance and glucose consumption of S. cerevisiae in high glucose, ethanol, and heat stresses and to explore the valid Snf1 form in the light of β subunits in these stresses.

Results: The results suggest that overexpression of SNF1 is effective to improve cell resistance and glucose consumption of S. cerevisiae in high glucose, ethanol, and heat stresses, which might be related to the changed accumulation of fatty acids and amino acids and altered expression levels of genes involved in glucose transport and glycolysis. However, different form of β regulatory subunits dominated in stresses with regard to cell tolerance and glucose utilization. The Sip1 isoform was more necessary to the growth and glucose consumption in ethanol stress. The glucose uptake largely depended on the Sip2 isoform in high sugar and ethanol stresses. The Gal83 isoform only contributed inferior effect on the growth in ethanol stress. Therefore, redundancy and synergistic effect of β subunits might occur in high glucose, ethanol, and heat stresses, but each subunit showed specificity under various stresses.

Conclusions: This study enriches the understanding of the function of Snf1 protein kinase and provides an insight to breed multi-stress tolerant yeast strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310068PMC
http://dx.doi.org/10.1186/s12934-020-01391-4DOI Listing

Publication Analysis

Top Keywords

tolerance glucose
12
protein kinase
12
glucose consumption
12
high glucose
12
glucose ethanol
12
ethanol heat
12
heat stresses
12
glucose
10
snf1
9
glucose utilization
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!