A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Research methodology and characteristics of journal articles with original data, preprint articles and registered clinical trial protocols about COVID-19. | LitMetric

Background: The research community reacted rapidly to the emergence of COVID-19. We aimed to assess characteristics of journal articles, preprint articles, and registered trial protocols about COVID-19 and its causal agent SARS-CoV-2.

Methods: We analyzed characteristics of journal articles with original data indexed by March 19, 2020, in World Health Organization (WHO) COVID-19 collection, articles published on preprint servers medRxiv and bioRxiv by April 3, 2010. Additionally, we assessed characteristics of clinical trials indexed in the WHO International Clinical Trials Registry Platform (WHO ICTRP) by April 7, 2020.

Results: Among the first 2118 articles on COVID-19 published in scholarly journals, 533 (25%) contained original data. The majority was published by authors from China (75%) and funded by Chinese sponsors (75%); a quarter was published in the Chinese language. Among 312 articles that self-reported study design, the most frequent were retrospective studies (N = 88; 28%) and case reports (N = 86; 28%), analyzing patients' characteristics (38%). Median Journal Impact Factor of journals where articles were published was 5.099. Among 1088 analyzed preprint articles, the majority came from authors affiliated in China (51%) and were funded by sources in China (46%). Less than half reported study design; the majority were modeling studies (62%), and analyzed transmission/risk/prevalence (43%). Of the 927 analyzed registered trials, the majority were interventional (58%). Half were already recruiting participants. The location for the conduct of the trial in the majority was China (N = 522; 63%). The median number of planned participants was 140 (range: 1 to 15,000,000). Registered intervention trials used highly heterogeneous primary outcomes and tested highly heterogeneous interventions; the most frequently studied interventions were hydroxychloroquine (N = 39; 7.2%) and chloroquine (N = 16; 3%).

Conclusions: Early articles on COVID-19 were predominantly retrospective case reports and modeling studies. The diversity of outcomes used in intervention trial protocols indicates the urgent need for defining a core outcome set for COVID-19 research. Chinese scholars had a head start in reporting about the new disease, but publishing articles in Chinese may limit their global reach. Mapping publications with original data can help finding gaps that will help us respond better to the new public health emergency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7306569PMC
http://dx.doi.org/10.1186/s12874-020-01047-2DOI Listing

Publication Analysis

Top Keywords

original data
16
characteristics journal
12
articles
12
journal articles
12
preprint articles
12
trial protocols
12
articles original
8
articles registered
8
protocols covid-19
8
articles published
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!