Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Potential energy surfaces (PESs) play a central role in our understanding of chemical reactions. Despite the impressive development of efficient electronic structure methods and codes, such computations still remain a difficult task for the majority of relevant systems. In this context, artificial neural networks (NNs) are promising candidates to construct the PES for a wide range of systems. However, the choice of suitable molecular descriptors remains a bottleneck for these algorithms. In this work, we show that a principal component analysis (PCA) is a powerful tool to prepare an optimal set of descriptors and to build an efficient NN: this protocol leads to a substantial improvement of the NNs in learning and predicting a PES. Furthermore, the PCA provides a means to reduce the size of the input space (i.e., number of descriptors) without losing accuracy. As an example, we applied this novel approach to the computation of the high-dimensional PES describing the keto-enol tautomerism reaction occurring in the acetone molecule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0009264 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!