Piezochromic materials, whose luminescence responds to external pressure, have recently garnered much experimental attention. Computational modeling of piezochromism is of high theoretical interest, yet currently lacking. Herein, we present a computational effort to predict the piezochromism for a selection of molecular crystals. The current methodology employs a combination of dispersion-corrected solid-state and gas-phase density-functional theory and Becke's virial exciton model. Our study finds that piezochromism is primarily driven by the modification of intermolecular interactions within the molecular crystal and can be understood from the perspectives of changing polarizability or bandgaps upon the application of mechanical pressure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0011515 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!