For a century ferroelectricity has attracted widespread interest from science and industry. Inorganic ferroelectric ceramics have dominated multibillion dollar industries of electronic ceramics, ranging from nonvolatile memories to piezoelectric sonar or ultrasonic transducers, whose polarization can be reoriented in multiple directions so that they can be used in the ceramic and thin-film forms. However, the realization of macroscopic ferroelectricity in the polycrystalline form is challenging for molecular ferroelectrics. In pursuit of low-cost, biocompatible, and mechanically flexible alternatives, the development of multiaxial molecular ferroelectrics is imminent. Here, from quinuclidinium perrhenate, we applied fluorine substitution to successfully design a multiaxial molecular ferroelectric, 3-fluoroquinuclidinium perrhenate ([3-F-Q]ReO), whose macroscopic ferroelectricity can be realized in both powder compaction and thin-film forms. The fluorination effect not only increases the intrinsic polarization but also reduces the coercive field strength. More importantly, it is also, as far as we know, the softest of all known molecular ferroelectrics, whose low Vickers hardness of 10.5 HV is comparable with that in poly(vinylidene difluoride) (PVDF) but almost 2 orders of magnitude lower than that in BaTiO. These attributes make it an ideal candidate for flexible and wearable devices and biomechanical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c05372 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Photovoltaic Science and Technology, Department of Materials Science, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China.
Ferroelectric semiconductors have the advantages of switchable polarization ferroelectric field regulation and semiconductor transport characteristics, which are highly promising in ferroelectric transistors and nonvolatile memory. However, it is difficult to prepare a Sn-based perovskite film with both robust ferroelectric and semiconductor properties. Here, by doping with 2-methylbenzimidazole, Sn-based perovskite [93.
View Article and Find Full Text PDFSci Adv
January 2025
2D Crystal Consortium, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.
Multiferroic materials host both ferroelectricity and magnetism, offering potential for magnetic memory and spin transistor applications. Here, we report a multiferroic chalcogenide semiconductor CuMnSiTe (0.04 ≤ ≤ 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China.
Chiral hybrid organic-inorganic metal halides (HOMHs) hold great promise in broad applications ranging from ferroelectrics, spintronics to nonlinear optics, owing to their broken inversion symmetry and tunable chiroptoelectronic properties. Typically, chiral HOMHs are constructed by chiral organic cations and metal anion polyhedra, with the latter regarded as optoelectronic active units. However, the primary design approaches are largely constrained to regulation of general components within structural formula.
View Article and Find Full Text PDFAdv Mater
December 2024
Wuzhen Laboratory, Jiaxing, 314500, P. R. China.
Phase boundary is highly recognized for its capability in engineering various physical properties of ferroelectrics. Here, field-induced polarization rotation is reported in a high-performance (K, Na)NbO-based ferroelectric system at the rhombohedral-tetragonal phase boundary. First, the lattice structure is examined from both macroscopic and local scales, implementing Rietveld refinement and pair distribution function analysis, respectively.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
Electrically switchable second harmonic generation (SHG) is highly valuable in electro-optic modulators, which can be deployed in data communication and quantum optics. Coupling circular dichroism (CD) with an electrically controlled SHG process is advantageous because it enhances the signal transmission bandwidth and security while enabling multiple modulation modes for optical logic. However, ferroelectrically switchable chiral second-order nonlinearity is rarely reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!