Protein-protein interactions (PPIs) represent an extremely attractive class of potential new targets for therapeutic intervention; however, the shallow extended character of many PPIs can render developing inhibitors against them as exceptionally difficult. Yet this problem can be made tractable by taking advantage of the fact that large interacting surfaces are often characterized by confined "hot spot" regions, where interactions contribute disproportionately to overall binding energies. Peptides afford valuable starting points for developing PPI inhibitors because of their high degrees of functional diversity and conformational adaptability. Unfortunately, contacts afforded by the 20 natural amino acids may be suboptimal and inefficient for accessing both canonical binding interactions and transient "cryptic" binding pockets. Oxime ligation represents a class of biocompatible "click" chemistry that allows the structural diversity of libraries of aldehydes to be rapidly evaluated within the context of a parent oxime-containing peptide platform. Importantly, oxime ligation represents a form of post solid-phase diversification, which provides a facile and empirical means of identifying unanticipated protein-peptide interactions that may substantially increase binding affinities and selectivity. The current review will focus on the authors' use of peptide ligation to optimize PPI antagonists directed against several targets, including tumor susceptibility gene 101 (Tsg101), protein tyrosine phosphatases (PTPases) and the polo-like kinase 1 (Plk1). This should provide insights that can be broadly directed against an almost unlimited range of physiologically important PPIs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356984 | PMC |
http://dx.doi.org/10.3390/molecules25122807 | DOI Listing |
Pharmaceuticals (Basel)
September 2024
Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
: The incorporation of radionuclides into peptides and larger biomolecules requires efficient and sometimes biorthogonal reaction conditions, to which click chemistry provides a convenient approach. : Traditionally, click-based radiolabeling techniques have focused on classical click chemistry, such as copper(I)-catalyzed alkyne-azide [3+2] cycloaddition (CuAAC), strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC), traceless Staudinger ligation, and inverse electron demand Diels-Alder (IEDDA). : However, newly emerging click-based radiolabeling techniques, including tyrosine-click, sulfo-click, sulfur(VI) fluoride exchange (SuFEx), thiol-ene click, azo coupling, hydrazone formations, oxime formations, and RIKEN click offer valuable alternatives to classical click chemistry.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2024
Mediterranean Institute for Life Sciences, Split, Croatia; Donnelly Centre, University of Toronto, Temerty School of Medicine, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Ontario, Canada; School of Medicine, University of Split, Croatia. Electronic address:
Protein-protein interactions (PPIs) play crucial roles in cellular signaling, transmitting signals from the cell surface to its interior. One of the most important signaling cascades is the RAS-RAF-MEK-ERK pathway. This pathway is initiated by various upstream signaling reactions, including receptor tyrosine kinase (RTK) activation, and it controls many biological functions like cell proliferation, differentiation, and survival.
View Article and Find Full Text PDFInt J Biol Macromol
October 2024
National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China. Electronic address:
Protein-based subunit vaccines are weakly immunogenic, and developing self-adjuvanting vaccines with adjuvant conjugated to antigen is a promising approach for generating optimal immune responses. Here, we report a novel adjuvant-protein conjugate vaccine based on versatile oxime ligation technique. Firstly, the adjuvant properties of a series of TLR7 and TLR7/8 small molecule agonists in self-adjuvanting vaccines were systematically compared by coupling them to proteins in consistent ratio via p-carboxybenzaldehyde (p-CBA) for the first time.
View Article and Find Full Text PDFAnal Chem
August 2024
Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China.
Glycans, particularly sialic acids (SAs), play crucial roles in diverse biological processes. Despite their significance, analyzing specific glycans, such as sialic acids, on individual small extracellular vesicles (sEVs) has remained challenging due to the limited glycan capacity and substantial heterogeneity of sEVs. To tackle this issue, we introduce a chemical modification method of surface SAs on sEVs named PALEV-nFCM, which involves periodate oxidation and aniline-catalyzed oxime ligation (PAL), in conjunction with single-particle analysis using a laboratory-built nano-flow cytometer (nFCM).
View Article and Find Full Text PDFPharmaceutics
March 2024
Institut Européen des Membranes, UMR CNRS 5635, Université de Montpellier, 34095 Montpellier, France.
Polysaccharides are gaining increasing attention for their relevance in the production of sustainable materials. In the domain of biomaterials, polysaccharides play an important role as hydrophilic components in the design of amphiphilic block copolymers for the development of drug delivery systems, in particular nanocarriers due to their outstanding biocompatibility, biodegradability, and structural versatility. The presence of a reducing end in polysaccharide chains allows for the synthesis of polysaccharide-based block copolymers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!