Nanomedicine in Non-Small Cell Lung Cancer: From Conventional Treatments to Immunotherapy.

Cancers (Basel)

Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08022 Barcelona, Spain.

Published: June 2020

Non-small cell lung cancer (NSCLC) remains the most common cause of cancer-related mortality. The heterogeneous nature of this disease hinders its diagnosis and treatment, requiring continuous advances in research aiming to understand its intricate nature. Consequently, the retrospective analysis of conventional therapies has allowed the introduction of novel tools provided by nanotechnology, leading to considerable improvements in clinical outcomes. Furthermore, the development of novel immunotherapies based on the recently understood interaction of the immune system with the tumor highlights the real possibility of definitively treating NSCLC from its early stages. Novel engineering approaches in nanomedicine will enable to overcome the intrinsic limits of conventional and emerging therapies regarding off-site cytotoxicity, specificity, resistance mechanisms, and administration issues. The convergence point of these therapies with nanotechnology lays the foundation for achieving currently unmet needs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352459PMC
http://dx.doi.org/10.3390/cancers12061609DOI Listing

Publication Analysis

Top Keywords

non-small cell
8
cell lung
8
lung cancer
8
nanomedicine non-small
4
cancer conventional
4
conventional treatments
4
treatments immunotherapy
4
immunotherapy non-small
4
cancer nsclc
4
nsclc remains
4

Similar Publications

We demonstrate that performing anatomical pulmonary resection by video-assisted thoracoscopic surgery without staplers or energy devices is feasible. This technique is an alternative for surgeons with limited access to expensive technologies.

View Article and Find Full Text PDF

A mouse model to assess immunotherapy-related colitis.

Methods Cell Biol

January 2025

Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain. Electronic address:

Combined blockade of the immune checkpoints PD-1 and CTLA-4 has shown remarkable efficacy in patients with melanoma, renal cell carcinoma, non-small-cell lung cancer and mesothelioma, among other tumor types. However, a proportion of patients suffer from serious immune-related adverse events (irAEs). In severe cases, a reduction of the doses or the complete cessation of the treatment is required, limiting the antitumor efficacy of these treatments.

View Article and Find Full Text PDF

CircKIAA0182 Enhances Lung Cancer Progression and Chemoresistance through Interaction with YBX1.

Cancer Lett

January 2025

Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China; Institute of Clinical Pharmacology, Central South University, Changsha 410078, P. R. China. Electronic address:

Lung cancer, particularly non-small cell lung cancer (NSCLC), remains a leading cause of cancer-related mortality. Resistance to platinum-based chemotherapy, such as cisplatin, significantly limits treatment efficacy. Circular RNAs (circRNAs) have emerged as key regulators of cancer progression and chemotherapy resistance due to their stable structure, which protects them from degradation.

View Article and Find Full Text PDF

Population pharmacokinetics of erlotinib in patients with non-small cell lung cancer (NSCLC): A model-based meta-analysis.

Comput Biol Med

January 2025

Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea; Department of Pharmaceutical Medicine and Regulatory Science, Yonsei University, Incheon, Republic of Korea; Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea; Department of Integrative Biotechnology, Yonsei University, Incheon, Republic of Korea. Electronic address:

Background: Erlotinib is a potent first-generation epidermal growth factor receptor tyrosine kinase inhibitor. Due to its proximity to the upper limit of tolerability, dose adjustments are often necessary to manage potential adverse reactions resulting from its pharmacokinetic (PK) variability.

Methods: Population PK studies of erlotinib were identified using PubMed databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!