Clinical trial data collection still relies on a manual entry from information available in the medical record. This process introduces delay and error risk. Automating data transfer from Electronic Health Record (EHR) to Electronic Data Capture (EDC) system, under investigators' supervision, would gracefully solve these issues. The present paper describes the design of the evaluation of a technology allowing EHR to act as eSource for clinical trials. As part of the EHR2EDC project, for 6 ongoing clinical trials, running at 3 hospitals, a parallel semi-automated data collection using such technology will be conducted focusing on a limited scope of data (demographic data, local laboratory results, concomitant medication and vital signs). The evaluation protocol consists in an individual participant data prospective meta-analysis comparing regular clinical trial data collection to the semi-automated one. The main outcome is the proportion of data correctly entered. Data quality and associated workload for hospital staff will be compared as secondary outcomes. Results should be available in 2020.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI200184 | DOI Listing |
Clin Oncol (R Coll Radiol)
December 2024
Radiation Oncology Network, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia. Electronic address:
Aims: Unresectable cutaneous squamous cell cancer of the head and neck (HNcSCC) poses treatment challenges in elderly and comorbid patients. Radiation therapy (RT) is often employed for locoregional control. This study aimed to determine progression-free survival (PFS) and overall survival (OS) outcomes achieved with upfront RT in unresectable HNcSCC.
View Article and Find Full Text PDFJ Surg Educ
January 2025
Department of Sociology, McGill University, Montreal, Quebec, Canada.
Objective: Discussions related to the importance of seeking specific consent for sensitive (e.g., pelvic, rectal) exams performed on anesthetized patients by medical students have been growing.
View Article and Find Full Text PDFAm J Emerg Med
January 2025
Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale University, New Haven, CT, USA.
Background: This study aimed to examine how physician performance metrics are affected by the speed of other attendings (co-attendings) concurrently staffing the ED.
Methods: A retrospective study was conducted using patient data from two EDs between January-2018 and February-2020. Machine learning was used to predict patient length of stay (LOS) conditional on being assigned a physician of average speed, using patient- and departmental-level variables.
Am J Emerg Med
January 2025
Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain; Emergency Department, Hospital Clínico Universitario, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain.
Background: The study of the inclusion of new variables in already existing early warning scores is a growing field. The aim of this work was to determine how capnometry measurements, in the form of end-tidal CO2 (ETCO2) and the perfusion index (PI), could improve the National Early Warning Score (NEWS2).
Methods: A secondary, prospective, multicenter, cohort study was undertaken in adult patients with unselected acute diseases who needed continuous monitoring in the emergency department (ED), involving two tertiary hospitals in Spain from October 1, 2022, to June 30, 2023.
Biomed Phys Eng Express
January 2025
Shandong University of Traditional Chinese Medicine, Qingdao Academy of Chinese Medical Sciences, Jinan, Shandong, 250355, CHINA.
Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!