The paper presents a review of current research to develop predictive models for automated detection of drug-induced repolarization disorders and shows a feasibility study for developing machine learning tools trained on massive multimodal datasets of narrative, textual and electrocardiographic records. The goal is to reduce drug-induced long QT and associated complications (Torsades-de-Pointes, sudden cardiac death), by identifying prescription patterns with pro-arrhythmic propensity using a validated electronic application for the detection of adverse drug events with data mining and natural language processing; and to compute individual-based predictive scores in order to further identify clinical conditions, concomitant diseases, or other variables that correlate with higher risk of pro-arrhythmic situations.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI200150DOI Listing

Publication Analysis

Top Keywords

machine learning
8
drug-induced repolarization
8
repolarization disorders
8
emerging concepts
4
concepts applied
4
applied machine
4
learning patients
4
patients drug-induced
4
disorders paper
4
paper presents
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!