The paper presents a review of current research to develop predictive models for automated detection of drug-induced repolarization disorders and shows a feasibility study for developing machine learning tools trained on massive multimodal datasets of narrative, textual and electrocardiographic records. The goal is to reduce drug-induced long QT and associated complications (Torsades-de-Pointes, sudden cardiac death), by identifying prescription patterns with pro-arrhythmic propensity using a validated electronic application for the detection of adverse drug events with data mining and natural language processing; and to compute individual-based predictive scores in order to further identify clinical conditions, concomitant diseases, or other variables that correlate with higher risk of pro-arrhythmic situations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI200150 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!