A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detection of Muscle Weakness in Medical Texts Using Natural Language Processing. | LitMetric

AI Article Synopsis

  • Identifying adverse events in clinical documents is crucial for both retrospective research and monitoring treatment safety and cost-effectiveness.
  • The study proposed semi-automated methods for detecting muscle weakness in preoperative clinical notes, aiming to improve predictions of paresis through images.
  • The combined approach using semi-expert and machine learning methods achieved high sensitivity, specificity, and AUC scores, indicating its effectiveness for creating reliable training datasets for supervised machine learning.

Article Abstract

Identifying adverse events in clinical documents is demanded in retrospective clinical research and prospective monitoring of treatment safety and cost-effectiveness. We proposed and evaluated a few methods of semi-automated muscle weakness detection in preoperative clinical notes for a larger project on predicting paresis by images. The combination of semi-expert and machine learning methods demonstrated maximized sensitivity = 0.860 and specificity = 0.919, and largest AUC = 0.943 with a 95% CI [0.874; 0.991], outperforming each method used individually. Our approaches are expected to be effective for autoshaping a well- verified training dataset for supervised machine learning.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI200143DOI Listing

Publication Analysis

Top Keywords

muscle weakness
8
machine learning
8
detection muscle
4
weakness medical
4
medical texts
4
texts natural
4
natural language
4
language processing
4
processing identifying
4
identifying adverse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!