A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Therapeutic effects of KANK2 in myocardial infarction rats might be associated with the NF-κB p65 inhibition. | LitMetric

Therapeutic effects of KANK2 in myocardial infarction rats might be associated with the NF-κB p65 inhibition.

Int Immunopharmacol

Department of Cardiovascular Medicine, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, PR China. Electronic address:

Published: September 2020

Objective: KN motif and ankyrin repeat domains 2 (KANK2) may inhibit the activation of (NF-kappaB) p65, which plays a role in myocardial injury. Thus, our study aims to discover the effect of KANK2 on myocardial infarction (MI) induced by ligating the left anterior descending coronary artery (LAD) through regulating NF-κB p65 in vivo.

Methods: MI rats underwent LAD ligation were administered with intramyocardial injections of KANK2/Control activation plasmids. Six weeks after MI, pressure-volume (P/V) loops was used to investigate the cardiac function of rats, then the following detections were performed, including TTC staining, HE staining, immunofluorescence, Masson' s trichrome staining, ELISA assay, TUNEL staining, immunohistochemistry, qRT-PCR and Western blotting.

Results: MI rats decreased in maximum pressure (p), ejection fraction (EF%), peak rate of pressure rise (dpdt) and decline (-dpdt) with increased end diastolic pressure (EDP), which was partially reversed by KANK2 overexpression. Besides, KANK2 CRISPR activation plasmids reduced infarct size with less collagen fiber proliferation and neutrophil infiltration in infarct tissues, as well as suppressed pro-inflammatory factors expressions in MI rats. Moreover, injection of KANK2 activation plasmid decreased collagen deposition, aggravated cardiomyocyte apoptosis, enhanced the capillary density, and increased the expressions of VEGF and bFGF in the infarct and peri-infarct regions of MI rats. KANK2 lowered myocardial NF-κB p65 expression in MI rats.

Conclusion: KANK2 may play its therapeutic role in MI through improving cardiac function, decreasing myocardial collagen deposition, reducing cardiomyocyte apoptosis, and increasing angiogenesis, which might be associated with the reduction of NF-κB p65 expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2020.106687DOI Listing

Publication Analysis

Top Keywords

nf-κb p65
16
kank2
8
kank2 myocardial
8
myocardial infarction
8
activation plasmids
8
cardiac function
8
collagen deposition
8
cardiomyocyte apoptosis
8
p65 expression
8
rats
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!