A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Two-dimensional analytical solution for VOC vapor migration through layered soil laterally away from the edge of contaminant source. | LitMetric

Two-dimensional analytical solution for VOC vapor migration through layered soil laterally away from the edge of contaminant source.

J Contam Hydrol

Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China. Electronic address:

Published: August 2020

A two-dimensional analytical solution is developed to simulate vapor migration in layered soil laterally away from the edge of contaminant source and has advantages in considering the vapor concentration profile in a functional form near the source edge. The analytical solution is validated against existing analytical solution, numerical model and experimental results. It has also proved to be an alternative screening tool to evaluate the vapor intrusion (VI) risk by compared with existing VI assessment tools. The influence of the characteristics of contaminant source and soil layer on the VI risk are investigated. The existence of capillary fringe effectively reduces VI risk. Among all the single-layer-soil cases, the lateral inclusion zone for sand is the widest due to the thinnest capillary fringe and the lowest effective diffusivity ratio between soil and capillary fringe. For layered soil, the lower effective diffusivity layer overlying the higher one enhances the horizontal diffusion and extends the lateral inclusion zone. The width of lateral inclusion zone increases logarithmically with increasing source concentration while it increases linearly with increasing source depth. Based on the calculation results, a simplified formula is proposed to preliminarily estimate the width of lateral inclusion zone for the typical single-layer-soil cases considering the capillary fringe.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconhyd.2020.103664DOI Listing

Publication Analysis

Top Keywords

analytical solution
16
capillary fringe
16
lateral inclusion
16
inclusion zone
16
layered soil
12
contaminant source
12
two-dimensional analytical
8
vapor migration
8
migration layered
8
soil laterally
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!