Enhanced durability, bio-activity and corrosion resistance of stainless steel through severe surface deformation.

Colloids Surf B Biointerfaces

Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh, 201314, India. Electronic address:

Published: October 2020

Owing to its good biocompatibility and low cost, stainless steel is one of the most widely utilized biomaterial. However, longtime assessment of stainless steel has shown problems related to material degradation, especially localized corrosion and bio-film formation. In addition, the leaching of toxic nickel and chromium ions from stainless steel leads to additional health complications. Here, we utilized submerged friction stir processing, a severe surface deformation technique for significantly enhancing its durability, bio-activity as well as antibacterial resistance. The processing was done with a wide variation in strain rates to produce tunable surface microstructure. High strain-rate processing resulted in nearly single-phase fine-grained microstructure, while slow strain-rate processing developed a dual-phase fine-grained microstructure. The bio-corrosion rate of processed steel was reduced by more than 60 % along with significant enhancement in the pitting resistance. The processed steel showed nearly no bacterial adhesion/biofilm formation, evaluated using S. aureus and E. coli bacterial strains. Further, the processed stainless steel surface demonstrated minimum leaching of the toxic elements, significantly enhancing its appeal for bio-implant applications. The observed behavior was explained based on the formation of a stable passive layer, rich in CrO, as determined using x-ray photoelectron microscopy (XPS) and increased hydrophilicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2020.111197DOI Listing

Publication Analysis

Top Keywords

stainless steel
20
durability bio-activity
8
severe surface
8
surface deformation
8
leaching toxic
8
strain-rate processing
8
fine-grained microstructure
8
processed steel
8
steel
7
stainless
5

Similar Publications

Aqueous zinc-ion batteries are an appealing electrochemical energy storage solution due to their affordability and safety. Significant attention has been focused on vanadium oxide cathode materials for ZIBs, owing to their high specific capacity, unique layered or tunnel structures, and low cost. Compared to traditional methods for preparing and assembling electrode materials, direct current (DC) magnetron sputtering allows direct synthesis and uniform deposition on current collectors, offering advantages such as simplicity, mild reaction conditions, and strong film adhesion.

View Article and Find Full Text PDF

Listeria monocytogenes raises major challenges for the food industry. Due to its capacity to form biofilms, this pathogen can persist in processing environments and contaminate the final products. Neutral electrolyzed water (NEW) may offer a promising and eco-friendly method for controlling L.

View Article and Find Full Text PDF

Objectives: Apical root resorption and alveolar bone loss are potential complications associated with orthodontic treatment. This study aimed to assess apical root resorption and alveolar bone height following orthodontic treatment of moderate crowding with labial vs. lingual fixed appliances using CBCT imaging.

View Article and Find Full Text PDF

Design of a wasp-inspired biopsy needle capable of self-propulsion and friction-based tissue transport.

Front Bioeng Biotechnol

January 2025

Department of BioMechanical Engineering, Bio-Inspired Technology Group, Faculty of Mechanical Engineering, Delft University of Technology, Delft, Netherlands.

Percutaneous pancreatic core biopsy is conclusive but challenging due to large-diameter needles, while smaller-diameter needles used in aspiration methods suffer from buckling and clogging. Inspired by the ovipositor of parasitic wasps, which resists buckling through self-propulsion and prevents clogging via friction-based transport, research has led to the integration of these functionalities into multi-segment needle designs or tissue transport system designs. This study aimed to combine these wasp-inspired functionalities into a single biopsy needle by changing the interconnection of the needle segments.

View Article and Find Full Text PDF

Assessment on surface integrity in electrochemical grinding of AISI 304.

Heliyon

January 2025

Advanced Technologies of Machine Tools (ATMT) Lab, Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran.

Electrochemical grinding (ECG) offers advantages such as burr-free and stress-free material removal. Despite its proven potential, limited research has addressed the comprehensive effects of key process parameters on the surface integrity of AISI 304 stainless steel, particularly for applications requiring high-quality finishes, such as medical components. This study bridges this gap by systematically investigating the influence of ECG key parameters including voltage, rotational speed, and electrolyte concentration on main surface integrity parameters including current density, surface roughness, microhardness, and surface texture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!