Bisphosphonates (BP) are a class of calcium-binding drug used to prevent bone resorption in skeletal disorders such as osteoporosis and metastatic bone disease. They act by selectively targeting bone-resorbing osteoclasts and can be grouped into two classes depending on their intracellular mechanisms of action. Simple BPs cause osteoclast apoptosis after cytoplasmic conversion into toxic ATP analogues. In contrast, nitrogen-containing BPs potently inhibit FPP synthase, an enzyme of the mevalonate (cholesterol biosynthesis) pathway. This results in production of a toxic metabolite (ApppI) and the loss of long-chain isoprenoid lipids required for protein prenylation, a process necessary for the function of small GTPase proteins essential for the survival and activity of osteoclasts. In this review we provide a state-of-the-art overview of these mechanisms of action and a historical perspective of how they were discovered. Finally, we challenge the long-held dogma that BPs act only in the skeleton and highlight recent studies that reveal insights into hitherto unknown effects on tumour-associated and tissue-resident macrophages.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2020.115493DOI Listing

Publication Analysis

Top Keywords

mechanisms action
12
molecular mechanisms
4
action bisphosphonates
4
bisphosphonates insights
4
insights effects
4
effects skeleton
4
skeleton bisphosphonates
4
bisphosphonates class
4
class calcium-binding
4
calcium-binding drug
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!