Duchenne muscular dystrophy (DMD) is a progressive skeletal muscle disease that is associated with severe cardiac complications in the late stages. Significant mitochondrial dysfunction is reportedly responsible for the development of cardiomyopathy with age. At the same time, adaptive changes in mitochondrial metabolism in cardiomyocytes were identified in the early stages of DMD. In this work, we evaluate the functioning of calcium transport systems (MCU and NCLX), and MPT pore in the heart mitochondria of young dystrophin-deficient mice. As compared to wild-type animals, heart mitochondria of mdx mice have been found to be more efficient both in respect to Ca uniport and Na-dependent Ca efflux. The data obtained indicate that the increased rate of Ca uptake by heart mitochondria of mdx mice may be due to an increase in the ratio of MCU and MCUb subunits. In turn, an increase in the rate of Ca efflux from organelles in DMD may be the result of a significant increase in the level of NCLX. Moreover, the heart mitochondria of mdx mice were more resistant to MPT pore opening, which may be due to an increase in the microviscosity of mitochondrial membranes of DMD mice. At the same time, the level of putative MPT pore proteins did not change. The paper discusses the effect of rearrangements of the mitochondrial proteome involved in the transport and accumulation of calcium on the adaptation of this organ to DMD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbabio.2020.148250 | DOI Listing |
Physiol Res
December 2024
Institute of Physiology, Biomedical Centre, Charles University, Faculty of Medicine in Plzen, Plzen, Czech Republic.
Mitochondria represent pivotal cellular organelles endowed with multifaceted functionalities encompassing cellular respiration, metabolic processes, calcium turnover, and the regulation of apoptosis, primarily through the generation of reactive oxygen species (ROS). Perturbations in mitochondrial dynamics have been intricately linked to the etiology of numerous cardiovascular pathologies, such as heart failure, ischemic heart disease, and various cardiomyopathies. Notably, recent attention has been directed towards the detrimental impact of micro- and nanoplastic pollution on mitochondrial integrity, an area underscored by a paucity of comprehensive investigations.
View Article and Find Full Text PDFInflamm Res
January 2025
Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China.
Cardiovascular diseases (CVDs) continue to be a substantial global healthcare burden despite considerable progress in therapies. The inflammatory response during the progression of CVD has attracted considerable attention. Mitochondria serve as the principal energy source for the heart.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China. Electronic address:
Excessive alcohol consumption is a major cause of alcoholic cardiomyopathy (ACM) and myocardial injury. This study aims to investigate the role of transcription factor EB (TFEB) in ethanol-induced cardiac anomalies using a murine model, AC16 human cardiomyocytes, and human plasma. Wild-type mice treated with a TFEB activator (Compound 1) or vehicle (25 mg/kg/d) were challenged with or without ethanol (3 g/kg/d, i.
View Article and Find Full Text PDFJ Mol Cell Cardiol Plus
September 2024
O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria 3065, Australia.
Dynamin-related protein 1 (Drp1) is a mitochondrial fission protein and a viable target for cardioprotection against myocardial ischaemia-reperfusion injury. Here, we reported a novel Drp1 inhibitor (DRP1i1), delivered using a cardiac-targeted nanoparticle drug delivery system, as a more effective approach for achieving acute cardioprotection. DRP1i1 was encapsulated in cubosome nanoparticles with conjugated cardiac-homing peptides (NanoDRP1i1) and the encapsulation efficiency was 99.
View Article and Find Full Text PDFHypertension, a major cause of cardiomyopathy, is one of the most critical risk factors for heart failure and mortality worldwide. Loss of metabolic flexibility of cardiomyocytes is one of the major causes of heart failure. Although Catestatin (CST) treatment is known to be both hypotensive and cardioprotective, its effect on cardiac metabolism is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!