The cellular and molecular origins of extracellular vesicles released by the helminth pathogen, Fasciola hepatica.

Int J Parasitol

School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, United Kingdom. Electronic address:

Published: August 2020

Parasitic helminths secrete extracellular vesicles (EVs) which have potent immunomodulatory effects. Whilst the cargo of EVs has been characterised for many species, we know little about the mechanisms that govern their biogenesis and release. Using antibodies raised against a panel of Fasciola hepatica EV (FhEV) marker proteins, we have identified multiple sites of EV production in the parasite. Discrete immunofluorescence patterns were observed within the gastrodermal cells and tegumental syncytium for different marker proteins whilst the protonephridial (excretory) system and parenchymal-type 2 cells were identified as additional sites of production (or transit) of FhEVs. Ligation was used to mechanically block the oral sucker, excretory pore, or both, to determine the effect on FhEV release from live adult flukes in vitro. This revealed that FhEVs are predominately derived from the gut, whilst the tegument releases EVs to a lesser extent. The data also suggest that the protonephridial system contributes to the small (120 K) EV sub-population. Sphingomyelinase (SMase) activity is a key driver of EV biogenesis in mammalian cells and we have previously identified SMases in FhEVs by mass spectrometry. SMase activity associated with isolated FhEVs was susceptible to the chemical inhibitor GW4869 and treatment of adult flukes with GW4869 led to a significant reduction in 120 K EV release in vitro, suggesting that a ceramide-dependent mechanism could drive 120 K EV formation. In contrast, the release of the larger 15 K EVs was only moderately impacted, indicating that they form independently of SMase activity. Ultrastructural observation of GW4869-treated F. hepatica tissue showed severe disruption to the parenchyma and vacuolation of the tegument, gastrodermal cells and epithelial lining of the excretory ducts. This work establishes that targeted disruption of EV biogenesis and release in helminths is possible, and provides proof-of-concept for future studies investigating EV secretion as a target for parasite control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpara.2020.03.015DOI Listing

Publication Analysis

Top Keywords

smase activity
12
extracellular vesicles
8
fasciola hepatica
8
biogenesis release
8
marker proteins
8
sites production
8
gastrodermal cells
8
cells identified
8
adult flukes
8
release
5

Similar Publications

Transient Receptor Potential (TRP) ion channels like Vanilloid 1 (TRPV1) and Melastatin 3 (TRPM3) are nonselective cation channels expressed in primary sensory neurons and peripheral nerve endings, which are located in cholesterol- and sphingolipid-rich membrane lipid raft regions and have important roles in pain processing. Besides TRP ion channels a wide variety of voltage-gated ion channels were also described in the membrane raft regions of neuronal cells. Here we investigated the effects of lipid raft disruption by methyl-beta-cyclodextrin (MCD) and sphingomyelinase (SMase) on TRPV1, TRPM3 and voltage-gated L-type Ca channel activation in cultured trigeminal neurons and sensory nerve terminals of the trachea.

View Article and Find Full Text PDF

Targeting LDL aggregation decreases atherosclerotic lipid burden in a humanized mouse model of familial hypercholesterolemia: Crucial role of ApoB100 conformational stabilization.

Atherosclerosis

October 2024

Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, 28029, Madrid, Spain. Electronic address:

Background And Aims: Low-density lipoprotein (LDL) aggregation is nowadays considered a therapeutic target in atherosclerosis. DP3, the retro-enantio version of the sequence Gly-Cys of LRP1, efficiently inhibits LDL aggregation and foam cell in vitro formation. Here, we investigate whether DP3 modulates atherosclerosis in a humanized ApoB100, LDL receptor (LDLR) knockout mice (LdlrhApoB100 Tg) and determine the potential LDL-related underlying mechanisms.

View Article and Find Full Text PDF

Background: Ulcerative colitis is a chronic inflammatory disease of the colon with an unknown etiology. Alkaline sphingomyelinase (alk-SMase) is specifically expressed by intestinal epithelial cells, and has been reported to play an anti-inflammatory role. However, the underlying mechanism is still unclear.

View Article and Find Full Text PDF

Envenomation by Loxosceles spiders can result in local and systemic pathologies. Systemic loxoscelism, which can lead to death, is characterized by intravascular hemolysis, platelet aggregation, and acute kidney injury. Sphingomyelinase D (SMase D) in Loxosceles spider venom is responsible for both local and systemic pathologies, and has been shown to induce metalloprotease activity.

View Article and Find Full Text PDF

Molecular basis for the catalytic mechanism of human neutral sphingomyelinases 1 (hSMPD2).

Nat Commun

November 2023

Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Enzymatic breakdown of sphingomyelin by sphingomyelinase (SMase) is the main source of the membrane lipids, ceramides, which are involved in many cellular physiological processes. However, the full-length structure of human neutral SMase has not been resolved; therefore, its catalytic mechanism remains unknown. Here, we resolve the structure of human full-length neutral SMase, sphingomyelinase 1 (SMPD2), which reveals that C-terminal transmembrane helices contribute to dimeric architecture of hSMPD2 and that D111 - K116 loop domain is essential for substrate hydrolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!