Full-thickness defects of the calvarium often present reconstructive challenges, necessitating large rotational flaps or microsurgical free tissue transfer. Although the vascularity of the scalp is robust, there is an increased risk of wound healing complications after both direct and indirect intracranial revascularization procedures as compared to routine craniotomies, as these procedures utilize extracranial scalp vasculature to supply the ischemic brain. Patients presenting with wound healing complications following intracranial revascularization surgeries may not be candidates for extensive reconstructive procedures, as they are often medically comorbid with cardiac disease, diabetes, and a paucity of recipient vessels for free tissue transfer due to underlying vascular disease that prompts initial revascularization surgery. We present a case of full-thickness calvarial reconstruction using dermal regeneration template and full-thickness skin grafting to the dura in a patient with a full thickness calvarial defect due to wound breakdown and exposed hardware following indirect intracranial revascularization with encephaloduroarteriosynangiosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SCS.0000000000006653 | DOI Listing |
Pediatr Rheumatol Online J
December 2024
Section of Rheumatology, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Canada.
Background: Primary small vessel CNS vasculitis (sv-cPACNS) is a challenging inflammatory brain disease in children. Brain biopsy is mandatory to confirm the diagnosis. This study aims to develop and validate a histological scoring tool for diagnosing small vessel CNS vasculitis.
View Article and Find Full Text PDFInt J Med Robot
February 2025
Division of Colorectal Surgery, Department of Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.
Background: Single port robotic platform offers articulation and 360° camera rotation for anorectal tumour excision in a narrow pelvic space. This study assesses the clinical usefulness and outcomes of SP robotic transanal surgery.
Methods: Nine patients who underwent transanal excision using the SP robotic platform were included.
Sci Rep
December 2024
Retina Ward, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
We compared chorioretinal microvascular of Slow Coronary Flow Phenomenon (SCFP) patients using Optical Coherence Tomography Angiography (OCTA) to healthy controls. We recruited 21 patients from September 2023 until January 2024 from two referral centers. We enrolled 21 age-sex-matched controls retrospectively.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemical Engineering, RVR & JC College of Engineering (A), Guntur, Andhra Pradesh, 522019, India.
The study analyzed the aqueous leaf extracts of Moringa oleifera and Musa sps. for phytochemical components, including flavonoids, sterols, saponins, tannins, and glycosides. The LC-MS analysis revealed gingerol, vicenin-2, caffeic acid, quercetin, and other compounds in the extracts.
View Article and Find Full Text PDFJ Craniofac Surg
December 2024
Department of Endocrinology and Metabolism, West China Hospital, Chengdu, China.
This study aimed to explore the construction of experimental animal models replicating cartilage defects across diverse load-bearing sites, compare self-repair conditions, and examine the role of mechanical stimulation in cartilage self-repair. Experimental animal models were established in rabbits to simulate full-thickness cartilage defects without penetrating the subchondral bone, at various load-bearing sites, including the posterior femoral condyle, anterior femoral condyle and femoral trochlear of knee joint, and the humerus of the shoulder joint. The successful exposure and construction of cartilage defects at the anterior femoral condyle, femoral trochlear, and posterior femoral condyle through the medial extension of surgical incision.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!