Purpose: This study aimed to verify the feasibility of using vascular complexity features for objective differentiation of controls and nonproliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR) patients.

Methods: This was a cross-sectional study conducted in a tertiary, subspecialty, academic practice. The cohort included 20 control subjects, 60 NPDR patients, and 56 PDR patients. Three vascular complexity features, including the vessel complexity index, fractal dimension, and blood vessel tortuosity, were derived from each optical coherence tomography angiography image. A shifting-window measurement was further implemented to identify local feature distortions due to localized neovascularization and mesh structures in PDR.

Results: With mean value analysis of the whole-image, only the vessel complexity index and blood vessel tortuosity were able to classify NPDR versus PDR patients. Comparative shifting-window measurement revealed increased sensitivity of complexity feature analysis, particularly for NPDR versus PDR classification. A multivariate regression model indicated that the combination of all three vascular complexity features with shifting-window measurement provided the best classification accuracy for controls versus NPDR versus PDR.

Conclusion: Vessel complexity index and blood vessel tortuosity were the most sensitive in differentiating NPDR and PDR patients. A shifting-window measurement increased the sensitivity significantly for objective optical coherence tomography angiography classification of diabetic retinopathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8267972PMC
http://dx.doi.org/10.1097/IAE.0000000000002874DOI Listing

Publication Analysis

Top Keywords

vascular complexity
16
diabetic retinopathy
16
shifting-window measurement
16
optical coherence
12
coherence tomography
12
tomography angiography
12
complexity features
12
pdr patients
12
vessel complexity
12
blood vessel
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!