Proposing a convolutional neural network for stress assessment by means of derived heart rate from functional near infrared spectroscopy.

Comput Biol Med

Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Published: June 2020

Background: Stress is known as one of the major factors threatening human health. A large number of studies have been performed in order to either assess or relieve stress by analyzing the brain and heart-related signals.

Method: In this study, a method based on the Convolutional Neural Network (CNN) approach is proposed to assess stress induced by the Montreal Imaging Stress Task. The proposed model is trained on the heart rate signal derived from functional Near-Infrared Spectroscopy (fNIRS), which is referred to as HRF. In this regard, fNIRS signals of 20 healthy volunteers were recorded using a configuration of 23 channels located on the prefrontal cortex. The proposed deep learning system consists of two main parts where in the first part, the one-dimensional convolutional neural network is employed to build informative activation maps, and then in the second part, a stack of deep fully connected layers is used to predict the stress existence probability. Thereafter, the employed CNN method is compared with the Dense Neural Network, Support Vector Machine, and Random Forest regarding various classification metrics.

Results: Results clearly showed the superiority of CNN over all other methods. Additionally, the trained HRF model significantly outperforms the model trained on the filtered fNIRS signals, where the HRF model could achieve 98.69 ± 0.45% accuracy, which is 10.09% greater than the accuracy obtained by the fNIRS model.

Conclusions: Employment of the proposed deep learning system trained on the HRF measurements leads to higher stress classification accuracy than the accuracy reported in the existing studies where the same experimental procedure has been done. Besides, the proposed method suggests better stability with lower variation in prediction. Furthermore, its low computational cost opens up the possibility to be applied in real-time monitoring of stress assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2020.103810DOI Listing

Publication Analysis

Top Keywords

neural network
16
convolutional neural
12
stress
8
stress assessment
8
heart rate
8
model trained
8
fnirs signals
8
proposed deep
8
deep learning
8
learning system
8

Similar Publications

Background: Unplanned readmission, a measure of surgical quality, occurs after 4.8% of primary total knee arthroplasties (TKA). Although the prediction of individualized readmission risk may inform appropriate preoperative interventions, current predictive models, such as the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) surgical risk calculator (SRC), have limited utility.

View Article and Find Full Text PDF

Background: Spinal cord injury (SCI) triggers a complex inflammatory response that impedes neural repair and functional recovery. The modulation of macrophage phenotypes is thus considered a promising therapeutic strategy to mitigate inflammation and promote regeneration.

Methods: We employed microarray and single-cell RNA sequencing (scRNA-seq) to investigate gene expression changes and immune cell dynamics in mice following crush injury at 3 and 7 days post-injury (dpi).

View Article and Find Full Text PDF

Background: Drug and protein targets affect the physiological functions and metabolic effects of the body through bonding reactions, and accurate prediction of drug-protein target interactions is crucial for drug development. In order to shorten the drug development cycle and reduce costs, machine learning methods are gradually playing an important role in the field of drug-target interactions.

Results: Compared with other methods, regression-based drug target affinity is more representative of the binding ability.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) are pivotal in the initiation and progression of complex human diseases and have been identified as targets for small molecule (SM) drugs. However, the expensive and time-intensive characteristics of conventional experimental techniques for identifying SM-miRNA associations highlight the necessity for efficient computational methodologies in this field.

Results: In this study, we proposed a deep learning method called Multi-source Data Fusion and Graph Neural Networks for Small Molecule-MiRNA Association (MDFGNN-SMMA) to predict potential SM-miRNA associations.

View Article and Find Full Text PDF

In this study, Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) were developed to estimate the equilibrium solubility and partial pressure of CO in blended aqueous solutions of diisopropanolamine (DIPA) and 2-amino-2-methylpropanol (AMP). In this study, several key parameters were analyzed to understand the behavior of the aqueous DIPA/AMP system for CO capture. Including DIPA (9-21 wt%), AMP (9-21 wt%), temperature (323.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!