Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Modern, enantioselective catalyst development is driven largely by empiricism. Although this approach has fostered the introduction of most of the existing synthetic methods, it is inherently limited by the skill, creativity, and chemical intuition of the practitioner. Herein, we present a complementary approach to catalyst optimization in which statistical methods are used at each stage to streamline development. To construct the optimization informatics workflow, a number of critical components had to be subjected to rigorous validation. First, the critically important molecular descriptors were validated in two case studies to establish the importance of conformation-dependent molecular representations. Next, with a large data set available, it was possible to investigate the amount of data necessary to make predictive models with different modeling methods. Given the commercial availability of many catalyst structures, it was possible to compare models generated with algorithmically selected training sets and commercially available training sets. Finally, the augmentation of limited data sets is demonstrated in a method informed by unsupervised learning to restore the accuracy of the generated models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c04715 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!