Organic photocatalysts are emerging as viable and more sustainable tools than metal complexes. Recently, the field of organo-photocatalysis has experienced an explosion in terms of applications, redesign of well-established systems, and identification of novel scaffolds. A rational approach to the structural modification of the different photocatalysts is key to accessing unprecedented reactivity, while improving their catalytic performances. We herein discuss the concepts underpinning the scaffold modification of some of the most recently used photocatalysts and analyze how specific structural changes alter their physicochemical and redox properties.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202006416DOI Listing

Publication Analysis

Top Keywords

rational approach
8
modification photocatalysts
8
approach organo-photocatalysis
4
organo-photocatalysis novel
4
novel designs
4
designs structure-property
4
structure-property relationships
4
relationships organic
4
organic photocatalysts
4
photocatalysts emerging
4

Similar Publications

Development and therapeutic assessment of bispecific nanobodies targeting B-cell activating factor and interleukin-17 for the neutralization of inflammatory mediators in autoimmune diseases.

Int J Biol Macromol

January 2025

School of Life Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; School of Advanced Agricultural Sciences, Peking University, Beijing 100000, China; Longhu Laboratory, Henan, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Henan, Zhengzhou 450001, China; College of Veterinary Medicine, Henan Agricultural University, Henan, Zhengzhou 450001, China. Electronic address:

Autoimmune diseases are characterized by dysregulated immune responses and chronic inflammation. B cell activating factor (BAFF) and interleukin-17 (IL-17) are key mediators in the pathogenesis of several autoimmune diseases, driving B cell hyperactivation, autoantibody production, and tissue damage. Simultaneous targeting of these pathways may provide a synergistic therapeutic approach.

View Article and Find Full Text PDF

State of the Art and Emerging Technologies in Vaccine Design for Respiratory Pathogens.

Semin Respir Crit Care Med

January 2025

Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy.

In this review, we present the efforts made so far in developing effective solutions to prevent infections caused by seven major respiratory pathogens: influenza virus, respiratory syncytial virus (RSV), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), , (), , and . Advancements driven by the recent coronavirus disease 2019 (COVID-19) crisis have largely focused on viruses, but effective prophylactic solutions for bacterial pathogens are also needed, especially in light of the antimicrobial resistance (AMR) phenomenon. Here, we discuss various innovative key technologies that can help address this critical need, such as (a) the development of Lung-on-Chip ex vivo models to gain a better understanding of the pathogenesis process and the host-microbe interactions; (b) a more thorough investigation of the mechanisms behind mucosal immunity as the first line of defense against pathogens; (c) the identification of correlates of protection (CoPs) which, in conjunction with the Reverse Vaccinology 2.

View Article and Find Full Text PDF

Emotion perception is a fundamental aspect of our lives because others' emotions may provide important information about their reactions, attitudes, intentions, and behavior. Following the seminal work of Ekman, much of the research on emotion perception has focused on facial expressions. Recent evidence suggests, however, that facial expressions may be more ambiguous than previously assumed and that context also plays an important role in deciphering the emotional states of others.

View Article and Find Full Text PDF

Enzymatic asymmetric synthesis of l-phenylglycine by amino acid dehydrogenases has potential for industrial applications; however, this is hindered by their low catalytic efficiency toward high-concentration substrates. We identified and characterized a novel leucine dehydrogenase (LeuDH) with a high catalytic efficiency for benzoylformic acid via directed metagenomic approaches. Further, we obtained a triple-point mutant LeuDH-EER (D332E/G333E/L334R) with improved stability and catalytic efficiency through the rational design of distal loop 13.

View Article and Find Full Text PDF

Kirkendall Effect-Mediated Transformation of ZIF-67 to NiCo-LDH Nanocages as Oxidase Mimics for Multicolor Point-of-Care Testing of β-Galactosidase Activity and .

Anal Chem

January 2025

Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P. R. China.

Early and portable detection of pathogenic bacteria is crucial for ensuring food safety, monitoring product quality, and tracing the sources of bacterial infections. Moving beyond traditional plate-culture counting methods, the analysis of active bacterial components offers a rapid means of quantifying bacteria. Here, metal-organic framework (MOF)-derived NiCo-layered double hydroxide nanosheets (LDHs), synthesized via the Kirkendall effect, were employed as highly effective oxidase mimics to generate reactive oxygen species (ROS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!