Undernutrition remains a public health problem in the developing world with an attributable under-five death proportion of 45%. Lower gut microbiota diversity and poor metabolic output are associated with undernutrition and new therapeutic paths may come from steering gut microbiota composition and functionality. Using a dynamic gut model, the Simulator of Human Intestinal Microbial Ecosystem (SHIME®), we investigated the effect of a lipid-based nutrient supplement enriched with prebiotics (LNSp), compared to LNS alone and control treatment, on the composition and metabolic functionality of fecal microbiota from three infants suffering from undernutrition. LNS elicited a significant increase in acetate and branched-chain fatty acid production, and a higher relative abundance of the genera Prevotella, Megasphaera, Acinetobacter, Acidaminococcus and Pseudomonas. In contrast, LNSp treatment resulted in a significant 9-fold increase in Bifidobacterium relative abundance and a decrease in that of potential pathogens and detrimental bacteria such as Enterobacteriaceae spp. and Bilophila sp. Moreover, the LNSp treatment resulted in a significantly higher production of acetate, butyrate and propionate, as compared to control and LNS. Our results suggest that provision of prebiotic-enhanced LNS to undernourished children could be a possible strategy to steer the microbiota toward a more beneficial composition and metabolic activity. Further in vivo investigations are needed to assess these effects and their repercussion on nutritional status.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsec/fiaa105DOI Listing

Publication Analysis

Top Keywords

relative abundance
12
lipid-based nutrient
8
nutrient supplement
8
bifidobacterium relative
8
fatty acid
8
acid production
8
gut microbiota
8
composition metabolic
8
lnsp treatment
8
microbiota
5

Similar Publications

Glucocorticosteroids remain the most common pharmaceutical approach for the treatment of equine asthma but can be associated with significant side effects, including respiratory microbiome alterations. The goal of the study was to assess the impact of 2% lidocaine nebulization, a projected alternative treatment of equine asthma, on the healthy equine respiratory microbiota. A prospective, randomized, controlled, blinded, 2-way crossover study was performed, to assess the effect of 1 mg/kg 2% lidocaine (7 treatments over 4 days) on the equine respiratory microbiota compared to control horses (saline and no treatment).

View Article and Find Full Text PDF

Background: Altered gut microbiota has been associated with dopaminergic degenerative diseases in people, but studies on horses with pituitary pars intermedia dysfunction (PPID) are lacking.

Hypothesis/objectives: Investigate the effect of PPID on fecal microbiota in horses.

Animals: Nine horses with PPID and 13 age-matched control horses.

View Article and Find Full Text PDF

Plant-based dietary patterns have been demonstrated to reduce the risk of non-communicable disease (NCD), including cardiovascular disease (CVD), type 2 diabetes, cancer, and all-cause mortality. Phenolic compounds (PC), abundant in plant-based foods, have been considered as instrumental in this attenuation of NCD risk. We evaluated the association between dietary intake of PC and the risk of all-cause mortality in a relatively young Mediterranean cohort of 18,173 Spanish participants in the "Seguimiento Universidad de Navarra" (SUN) project, after a median follow-up of 12.

View Article and Find Full Text PDF

Bioremediation is widely recognized as a promising and efficient approach for the elimination of Cd from contaminated paddy soils. However, the Cd removal efficacy achieved through this method remains unsatisfactory and is accompanied by a marginally higher cost. Cysteine has the potential to improve the bioleaching efficiency of Cd from soils and decrease the use cost since it is green, acidic and has a high Cd affinity.

View Article and Find Full Text PDF

Illegal solid waste dumping is a significant factor contributing to environmental damage. In this study, 16S rRNA gene sequencing technology was used for the identification and assessment of environmental damage in an illegal dumping area in China, with the aim of confirming environmental damage through analyzing changes in the soil bacterial communities across slag, sewage sludge, and non-contaminated areas. The results indicate that the diversity of soil bacteria decreases with an increase in the degree of pollution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!