On the effect of particle surface chemistry in film stratification and morphology regulation.

Soft Matter

Department of Chemistry and Chemical Engineering, Applied Chemistry, Chalmers University of Technology, Sweden.

Published: July 2020

AI Article Synopsis

  • Colloidal mixtures of binders and silica are used to create functional coatings, where the balance of factors like particle migration and evaporation influences their surface characteristics.
  • The surface chemistry of nanoparticles significantly impacts the morphology and properties of the final films, enabling adjustments in surface and bulk structure.
  • Experiments showed that modified silica (MSiO2) forms porous films due to better gelation properties compared to bare silica (BSiO2), which results in uniform films, highlighting how particle chemistry and process conditions can control film porosity.

Article Abstract

Combinations of colloids and binders are often used to formulate functional coatings. In these mixtures, competition between particle migration, polymer chain diffusion, evaporation and sedimentation affects their respective spatial location and therefore can govern the surface features. In addition to this, the surface chemistry of the nanoparticles (NPs) and the resulting interparticle interactions can play a significant role in dictating the morphology and the properties of resultant films. Hence it would be possible to tune the surface and bulk topology of the films by controlling these parameters. A combination of various acrylic binders with two types of silica sols, bare (BSiO2) and modified silica (MSiO2), differing in their ability to gel, were formulated and dried under controlled conditions. Factors influencing the mobility and migration of binder and silica particles were evaluated with respect to particle concentration and drying rate. MSiO2 films showed prominent pores with gradual increase in Si% across the cross-section of the films, whereas, BSiO2 films had no pores and showed a uniform Si content across the cross-section of the films. This difference is explained by the variation in gelation between BSiO2 compared to MSiO2, that hindered the NPs migration and affects the infiltration and stratification process. This study paves a path forward to achieve desired surface and bulk porosity from colloidal silica coatings by effective control of chemistry of particles along with process parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0sm00317dDOI Listing

Publication Analysis

Top Keywords

surface chemistry
8
surface bulk
8
cross-section films
8
films
6
particle surface
4
chemistry film
4
film stratification
4
stratification morphology
4
morphology regulation
4
regulation combinations
4

Similar Publications

Ligand-induced changes in the electrocatalytic activity of atomically precise Au nanoclusters.

Chem Sci

January 2025

School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University Chongqing 401331 China

Atomically precise gold nanoclusters have shown great promise as model electrocatalysts in pivotal electrocatalytic processes such as the hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CORR). Although the influence of ligands on the electronic properties of these nanoclusters is well acknowledged, the ligand effects on their electrocatalytic performances have been rarely explored. Herein, using [Au(SR)] nanoclusters as a prototype model, we demonstrated the importance of ligand hydrophilicity hydrophobicity in modulating the interface dynamics and electrocatalytic performance.

View Article and Find Full Text PDF

The increasing demand for sustainable food packaging has driven the development of films based on biopolymers. However, enhancing their functional properties remains a challenge. In the current study, potato starch-pectin (PSP) composite films were fabricated and enriched with juniper berry essential oil (JBEO) to improve their physicochemical properties.

View Article and Find Full Text PDF

Medical implants are designed to replace missing parts or improve body functions and must be capable of providing structural support or therapeutic intervention for a medical condition. Advances in materials science have enabled the development of devices made from metals, polymers, bioceramics, and composites, each with its specific advantages and limitations. This review analyzes the incorporation of biopolymers, proteins, and other biomacromolecules into implants, focusing on their role in biological integration and therapeutic functions.

View Article and Find Full Text PDF

An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.

View Article and Find Full Text PDF

Blood carries some of the most valuable biomarkers for disease screening as it interacts with various tissues and organs in the body. Human blood serum is a reservoir of high molecular weight fraction (HMWF) and low molecular weight fraction (LMWF) proteins. The LMWF proteins are considered disease marker proteins and are often suppressed by HMWF proteins during analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!