Spatiotemporal control of calcium carbonate nucleation using mechanical deformations of elastic surfaces.

Soft Matter

Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA. and Nebraska Centre for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.

Published: July 2020

AI Article Synopsis

  • Biological systems create unique crystalline materials that can't be replicated synthetically.
  • A biomimetic method was developed using the mechanical properties of silicone surfaces to influence the rate of calcium carbonate (CaCO3) nucleation.
  • This approach shifts from traditional crystal engineering by making surfaces dynamic participants in the nucleation process, allowing for spatial and temporal control of crystal formation.

Article Abstract

Biological systems generate crystalline materials with properties and morphologies that cannot be duplicated using synthetic procedures. Developing strategies that mimic the control mechanisms found in nature would enhance the range of functional materials available for numerous technological applications. Herein, a biomimetic approach based on the mechano-dynamic chemistry of silicone surfaces was used to control the rate of heterogeneous CaCO3 nucleation. Specifically, stretching the silicone surface redistributed functional groups, tuning interfacial energy and thus the rate of CaCO3 crystal formation, as predicted by classical nucleation rate laws. We extended this procedure using microrelief patterns to program surface strain fields to spatially control the location of nucleation. The strategies presented herein represent a fundamental departure from traditional bottom-up crystal engineering, where surfaces are chemically static, to them being active participants in the nucleation process controlling the outcome both spatially and temporally.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0sm00734jDOI Listing

Publication Analysis

Top Keywords

nucleation
5
spatiotemporal control
4
control calcium
4
calcium carbonate
4
carbonate nucleation
4
nucleation mechanical
4
mechanical deformations
4
deformations elastic
4
elastic surfaces
4
surfaces biological
4

Similar Publications

Protocol for quantifying muscle fiber size, number, and central nucleation of mouse skeletal muscle cross-sections using Myotally software.

STAR Protoc

January 2025

Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA. Electronic address:

Here, we present a protocol for using Myotally, a user-friendly software for fast, automated quantification of muscle fiber size, number, and central nucleation from immunofluorescent stains of mouse skeletal muscle cross-sections. We describe steps for installing the software, preparing compatible images, finding the file path, and selecting key parameters like image quality and size limits. We also detail optional features, such as measuring mean fluorescence.

View Article and Find Full Text PDF

Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.

View Article and Find Full Text PDF

A novel organic-inorganic eutectic phase change material (PCM) based on sodium acetate trihydrate (SAT) and polyethylene glycol (PEG) was developed to meet the needs of heat recovery and building heating. Three kinds of PEG with different molecular weights were selected to form organic-inorganic eutectic PCM with SAT. The thermal properties of three series of SAT-PEG eutectic PCM were compared based on DSC results, focusing on the impact of PEG addition on the phase change temperature and enthalpy of SAT, as well as the melting uniformity.

View Article and Find Full Text PDF

Theoretical and Experimental Research on the Short-Range Structure in Gallium Melts Based on the Wulff Cluster Model.

Materials (Basel)

December 2024

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China.

In this paper, the short-range ordering structures of Ga melts has been investigated using the Wulff cluster model (WCM). The structures with a Wulff shape outside and crystal symmetry inside have been derived as the equivalent system to describe the short-range-order (SRO) distribution of the Ga melts. It is observed that the simulated HTXRD patterns of the Ga WCM are in excellent agreement with the experimental data at various temperatures (523 K, 623 K, and 723 K).

View Article and Find Full Text PDF

Damage mechanisms are a key factor in materials science and are essential for understanding and predicting the behavior of materials under complex loading conditions. In this paper, the influence of different directions, different rates and different model parameters on the mechanical behavior of AZ31 magnesium alloy during the tensile process is investigated based on the secondary development of the VUMAT user subroutine based on the GTN damage model and verified by the tensile experiments at different loading rates and in different directions. The results show that AZ31 magnesium alloy exhibits significant differences in mechanical properties in radial and axial stretching, where the yield strength is lower in the radial direction than in the axial direction, and the elongation is the opposite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!