Correct folding and assembly of proteins and protein complexes are essential for cellular function. Cells employ quality control pathways that correct, sequester or eliminate damaged proteins to maintain a healthy proteome, thus ensuring cellular proteostasis and preventing further protein damage. Because of redundant functions within the proteostasis network, screening for detectable phenotypes using knockdown or mutations in chaperone-encoding genes in the multicellular organism Caenorhabditis elegans results in the detection of minor or no phenotypes in most cases. We have developed a targeted screening strategy to identify chaperones required for a specific function and thus bridge the gap between phenotype and function. Specifically, we monitor novel chaperone interactions using RNAi synthetic interaction screens, knocking-down chaperone expression, one chaperone at a time, in animals carrying a mutation in a chaperone-encoding gene or over-expressing a chaperone of interest. By disrupting two chaperones that individually present no gross phenotype, we can identify chaperones that aggravate or expose a specific phenotype when both perturbed. We demonstrate that this approach can identify specific sets of chaperones that function together to modulate the folding of a protein or protein complexes associated with a given phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.3791/61140DOI Listing

Publication Analysis

Top Keywords

caenorhabditis elegans
8
chaperone interactions
8
protein complexes
8
identify chaperones
8
chaperone
5
elegans screen
4
screen tissue-specific
4
tissue-specific chaperone
4
interactions correct
4
correct folding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!