For more than 40 years, most astrophysical observations and laboratory studies of two key soft x-ray diagnostic 2p-3d transitions, 3C and 3D, in Fe XVII ions found oscillator strength ratios f(3C)/f(3D) disagreeing with theory, but uncertainties had precluded definitive statements on this much studied conundrum. Here, we resonantly excite these lines using synchrotron radiation at PETRA III, and reach, at a millionfold lower photon intensities, a 10 times higher spectral resolution, and 3 times smaller uncertainty than earlier work. Our final result of f(3C)/f(3D)=3.09(8)(6) supports many of the earlier clean astrophysical and laboratory observations, while departing by five sigmas from our own newest large-scale ab initio calculations, and excluding all proposed explanations, including those invoking nonlinear effects and population transfers.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.124.225001DOI Listing

Publication Analysis

Top Keywords

oscillator strength
8
high resolution
4
resolution photoexcitation
4
photoexcitation measurements
4
measurements exacerbate
4
exacerbate long-standing
4
long-standing xvii
4
xvii oscillator
4
strength problem
4
problem 40 years
4

Similar Publications

Illusions of self-motion (vection) can be improved by adding global visual oscillation to patterns of optic flow. Here we examined whether adding apparent visual oscillation (based on four-stroke apparent motion-4SAM) also improves vection. This apparent vertical oscillation was added to self-motion displays simulating constant velocity leftward self-motion.

View Article and Find Full Text PDF

Cavity correlations and the onset of charge ordering at charged interfaces: A modified Poisson-Fermi approach.

J Chem Phys

January 2025

Instituto de Física, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, MG, Brazil.

Charge layering in the close vicinity of charged interfaces is a well-known effect, extensively reported in both experiments and simulations of Room Temperature Ionic Liquids (RTILs) and concentrated electrolytes. The traditional Poisson-Fermi (PF) theory is able to successfully describe overcrowding effects but fails to reproduce charge ordering even in strong coupling regimes. Simple models, yet capable of investigating the interplay between these important interfacial phenomena, are still lacking.

View Article and Find Full Text PDF

In this study, the radiative and nonradiative decay pathways from the first singlet excited states (denoted as S) of three bithiophene-fused isoquinolines were investigated by using the mixed-reference spin-flip time-dependent density functional theory approach. These isoquinolines, which are prepared via [2 + 2 + 2] cycloaddition reactions between three types of bithiophene-linked diynes and nitriles, exhibit different fluorescence quantum yields in response to the positions of their sulfur atoms. The decay processes, including the fluorescence emission and internal conversion, were considered.

View Article and Find Full Text PDF

Subthalamic nucleus deep brain stimulation in the beta frequency range boosts cortical beta oscillations and slows down movement.

J Neurosci

January 2025

Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Germany

Recordings from Parkinson's disease (PD) patients typically show strong beta-band oscillations (13-35Hz), which can be modulated by deep brain stimulation (DBS). While high-frequency DBS (>100Hz) ameliorates motor symptoms and reduces beta activity in basal ganglia and motor cortex, the effects of low-frequency DBS (<30Hz) are less clear. Clarifying these effects is relevant for the debate about the role of beta oscillations in motor slowing, which might be causal or epiphenomenal.

View Article and Find Full Text PDF

Structure of the Se Isomers─An Ab Initio Study.

J Phys Chem A

January 2025

Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.

This study investigates the equilibrium geometries of four different Se isomers using the coupled cluster single and double perturbative (CCSD(T)) method, extrapolating to the complete basis sets. The ground-state geometry of the Se isomer with the C structure (2.8715 Å, 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!