Accelerating Biphasic Biocatalysis through New Process Windows.

Angew Chem Int Ed Engl

School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.

Published: September 2020

Process intensification through continuous flow reactions has increased the production rates of fine chemicals and pharmaceuticals. Catalytic reactions are accelerated through an unconventional and unprecedented use of a high-performance liquid/liquid counter current chromatography system. Product generation is significantly faster than in traditional batch reactors or in segmented flow systems, which is exemplified through stereoselective phase-transfer catalyzed reactions. This methodology also enables the intensification of biocatalysis as demonstrated in high yield esterifications and in the sesquiterpene cyclase-catalyzed synthesis of sesquiterpenes from farnesyl diphosphate as high-value natural products with applications in medicine, agriculture and the fragrance industry. Product release in sesquiterpene synthases is rate limiting due to the hydrophobic nature of sesquiterpenes, but a biphasic system exposed to centrifugal forces allows for highly efficient reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540285PMC
http://dx.doi.org/10.1002/anie.202005183DOI Listing

Publication Analysis

Top Keywords

accelerating biphasic
4
biphasic biocatalysis
4
biocatalysis process
4
process windows
4
windows process
4
process intensification
4
intensification continuous
4
continuous flow
4
reactions
4
flow reactions
4

Similar Publications

The coronavirus main protease (MPro) plays a pivotal role in viral replication and is the target of several antivirals against SARS-CoV-2. In some species, CRCs of MPro enzymatic activity can exhibit biphasic behavior in which low ligand concentrations activate the enzyme whereas higher ones inhibit it. While this behavior has been attributed to ligand-induced dimerization, quantitative enzyme kinetics models have not been fit to it.

View Article and Find Full Text PDF

Mitochondria are organelles involved in different cellular functions, especially energy production. A relationship between mitochondrial dysfunction and mood disorders, especially bipolar disorder (BD), has been reported in the scientific literature, which suggests altered energy production and higher levels of oxidative stress compared to healthy controls. Specifically, in BD, the hypothesis of a biphasic pattern of energy availability has been postulated according to mood states.

View Article and Find Full Text PDF

The timing of metamorphosis and settlement is critical for the survival and reproductive success of marine animals with biphasic life cycles. Thyroid hormones (THs) regulate developmental timing in diverse groups of chordates, including the regulation of metamorphosis in amphibians, teleosts, lancelets, tunicates, and lampreys. Recent evidence suggests a role for TH regulation of metamorphosis outside of the chordates, including echinoderms, annelids, and molluscs.

View Article and Find Full Text PDF

Objective: Using electrochemical characterization methods of stimulation electrodes as well as accelerated stimulation examinations, a safe operating field for stimulation is investigated for particularly very large Pt-Ir macroelectrodes in a Laplace configuration.

Approach: Traditional methods such as Electrochemical Impedance Spectroscopy, Cyclic Voltammetry and biphasic, charge balanced current pulses were applied on Pt-Ir macroelectrodes in phosphate buffered saline solution to investigate reversible boundaries. These experiments were adapted to approach realistic working conditions.

View Article and Find Full Text PDF

A new class of ligands, ,'-dialkyl-2,6-pyridinediamide (DRPDA), has been designed with the specific intention of exhibiting interchangeable diversity in coordination modes, including organometallic interactions, for the purpose of solvent extraction of elements relevant to the proper treatment of high-level radioactive liquid waste (HLLW) generated after nuclear fuel reprocessing. Consequently, DRPDA has been observed to extract Pd(II) and Zr(IV) from HNO(aq) to 1-octanol in nearly quantitative yields when the selected ligand is sufficiently hydrophobic. However, concomitance of some of other HLLW components were also found.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!