The hydroxyl radical (•OH) scavenging activities of Melatonin, an endogenously produced neurohormone and its related indolamines like -acetyl tryptophan (NAT) and -acetyl serotonin (NAS) have been investigated using density functional theory. The mechanism involves 4 steps: initial radical addition to position-3 of the indole ring, keto-amine to enol-imine tautomerization, cyclisation, and finally, addition of a second •OH leading to a cyclic end product. Incorporation of an explicit water molecule in tautomerization step leads to a significant reduction in the barrier of this step, so that the subsequent cyclisation step becomes rate-limiting. In agreement with the very high reactivity of •OH, the initial and final addition of •OH to indolamine are found to be barrierless. Radical adduct formed in the initial step was found to be very stable due to the extensive conjugation present in the substrate. Our calculations show that melatonin is the most effective radical scavenger among the three molecules chosen. NAS was found to exhibit antiradical property comparable to that of melatonin. In contrast to the general observation of reduced antioxidant activity of tryptophan, a non-natural derivative of tryptophan used here (NAT) is found to have good radical scavenging activity. This work further implies that non-natural derivatives of indolamines might as well be useful in the detoxification of free radicals as they exhibit almost comparable antioxidant efficiency as that of melatonin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10715762.2020.1774575 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
The Cyprus Institute, Climate and Atmosphere Research Center, 2121, Nicosia, Cyprus.
The production of nitrogen oxides (NO = NO + NO ) is substantial in urban areas and from fossil fuel-fired power plants, causing both local and regional pollution, with severe consequences for human health. To estimate their emissions and implement air quality policies, authorities often rely on reported emission inventories. The island of Cyprus is de facto divided into two different political entities, and as a result, such emissions inventories are not systematically available for the whole island.
View Article and Find Full Text PDFAnal Methods
January 2025
Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
X-ray footprinting mass spectrometry (XFMS) is a structural biology method that uses broadband X-rays for hydroxyl radical labeling to map protein interactions and conformation in solution. However, while XFMS alone provides important structural information on biomolecules, as we move into the era of the interactome, hybrid methods are becoming increasingly necessary to gain a comprehensive understanding of protein complexes and interactions. Toward this end, we report the development of the first synergetic application of inline and real-time fluorescent spectroscopy at the Advanced Light Source's XFMS facility to study local protein interactions and global conformational changes simultaneously.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de l'Atmosphère - PC2A, 59000 Lille, France.
Fenpyrazamine (FPA) is a widely used fungicide in agriculture to control fungal diseases, but its environmental degradation by oxidants and the formation of potential degradation products remain unexplored. This study investigates the oxidation of FPA by hydroxyl radicals (HO˙) using density functional theory (DFT) calculations at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G(d,p) level of theory. Three standard oxidation mechanisms, including formal hydrogen transfer (FHT), radical adduct formation (RAF), and single electron transfer (SET), were evaluated in the aqueous phase, with reaction kinetics analyzed over a temperature range of 283-333 K.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
December 2024
Department of Fruit Science, College of Horticulture and Forestry, CAU (I), Pasighat, Arunachal Pradesh 791102 India.
An experiment was performed to understand the effects of aluminium toxicity (AlCl·6HO) on Kachai lemon growth and development. The toxic effects of aluminium were assessed for 45 days in sand media. With untreated pots serving as the control, seedlings of 1 month old were exposed to three concentrations of AlCl·6HO: 300 μM, 600 μM and 900 μM.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000 Wuhu, P.R. China.
At present, some progress has been made in developing NIR light-responsive free radical generators. However, the efficacy of theranostics continues to be hindered by tumor-associated inflammatory reactions. Hence, fulfilling the in situ release of free radicals upon NIR light excitation specifically activated by the inflammation microenvironment would be an ideal strategy for efficient inflammation eradication and tumor suppression but remains a challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!