Tunable Photonic Microspheres of Comb-Like Supramolecules.

Small

State Key Lab of Materials Processing and Die and Mould Technology and Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.

Published: July 2020

Photonic crystals (PCs) are ideal candidates for reflective color pigments with high color purity and brightness due to tunable optical stop band. Herein, the generation of PC microspheres through 3D confined supramolecular assembly of block copolymers (polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP) and small molecules (3-n-pentadecylphenol, PDP) in emulsion droplets is demonstrated. The intrinsic structural colors of the PC microspheres are effectively regulated by tuning hydrogen-bonding interaction between P2VP blocks and PDP, where reflected color can be readily tuned across the whole visible spectrum range. Also, the effects of both PDP and homopolymer (hPS) on periodic structure and optical properties of the microspheres are investigated. Moreover, the spectral results of finite element method (FEM) simulation agree well with the variation of structural colors by tuning the periodicity in PC microspheres. The supramolecular microspheres with tunable intrinsic structural color can be potentially useful in the various practical applications including display, anti-counterfeit printing and painting.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202001315DOI Listing

Publication Analysis

Top Keywords

intrinsic structural
8
structural colors
8
microspheres
6
tunable photonic
4
photonic microspheres
4
microspheres comb-like
4
comb-like supramolecules
4
supramolecules photonic
4
photonic crystals
4
crystals pcs
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!