Probing the Radial Chemistry of Getter Components in Light Water Reactors via Controlled Electrochemical Dissolution.

ACS Omega

Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

Published: June 2020

Getters are among the key functional components in the tritium-producing burnable absorber rods (TPBARs) of light water reactors (LWRs) and are used to capture the released tritium gas. They are nickel-plated zircaloy-4 tubes that, upon exposure to irradiation or tritium in the light water reactors, undergo alteration in structure, chemical composition, and chemistry. Understanding the radial tritium distribution is key to gaining insight into the evolution of new chemistry upon irradiation to predict getter performance. The holy grail is to develop a method akin to selectively peeling off the layers of an onion in an effort to get a radial map of elements and particularly tritium across the getter. Toward this goal, the overall aim of this work is to establish a correlative technique that can be used to determine radial tritium distribution across getters. To this end, this work specifically focuses on the validation of a correlative method for controlled radial dissolution of nickel-plated getters. Here, pristine getters as well as getters loaded with different mass ratios of hydrogen and deuterium are used as the nonradioactive surrogates of tritium, the idea being that the methodology can be readily extended to tritiated getter components. Here, the surface nickel layers as well as the bulk zirconium layers are sequentially dissolved in a controlled, uniform way using voltage-assisted electrochemical dissolution techniques. The dissolution is complemented by periodic elemental analysis of the electrolyte solution during and post dissolution. This is complemented by microscopic analyses on the exposed surfaces to provide a correlative technique for a complete picture of the radial distribution of various elements across the getter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7301368PMC
http://dx.doi.org/10.1021/acsomega.0c00165DOI Listing

Publication Analysis

Top Keywords

light water
12
water reactors
12
getter components
8
electrochemical dissolution
8
radial tritium
8
tritium distribution
8
correlative technique
8
dissolution complemented
8
tritium
6
getter
5

Similar Publications

During maritime operations, extreme events such as explosions, grounding, and seal failures can cause water ingress into lubricant compartments, forming oil-water emulsions that significantly affect the lubrication performance of ship stern bearings. Existing studies mainly focus on low water content, with limited exploration of the impact of high water content on lubrication performance. To address this gap, viscosity measurements of oil-water mixtures were conducted, and an emulsification viscosity equation applicable to varying water contents was derived.

View Article and Find Full Text PDF

Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.

View Article and Find Full Text PDF

MXene-based composite photocatalysts for efficient degradation of antibiotics in wastewater.

Sci Rep

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.

View Article and Find Full Text PDF

Microtextured microneedles are tiny needle-like structures with micron-scale microtextures, and the drugs stored in the microtextures can be released after entering the skin to achieve the effect of precise drug delivery. In this study, the skin substitution model of Ogden's hyperelastic model and the microneedle array and microtexture models with different geometrical parameters were selected to simulate and analyse the flow of the microtexture microneedle arrays penetrating the skin by the finite-element method, and the length of the microneedles was determined to be 200 μm, the width 160 μm, and the value of the gaps was determined to be 420 μm. A four-pronged cone was chosen as the shape of microneedles, and a rectangle was chosen as the shape of the drug-carrying microneedle.

View Article and Find Full Text PDF

Aero-TiO three-dimensional nanoarchitecture for photocatalytic degradation of tetracycline.

Sci Rep

December 2024

Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania.

One of the biggest issues of wide bandgap semiconductor use in photocatalytic wastewater treatment is the reusability of the material and avoiding the contamination of water with the material itself. In this paper, we report on a novel TiO aeromaterial (aero-TiO) consisting of hollow microtetrapods with ZnTiO inclusions. Atomic layer deposition has been used to obtain particles of unique shape allowing them to interlock thereby protecting the photocatalyst from erosion and damage when incorporated in active filters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!