Fluorescent redox-dependent labeling of lipid droplets in cultured cells by reduced phenazine methosulfate.

Heliyon

Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Buenos Aires, C1427CWO, Argentina.

Published: June 2020

Natural and synthetic phenazines are widely used in biomedical sciences. In dehydrogenase histochemistry, phenazine methosulfate (PMS) is applied as a redox reagent for coupling reduced coenzymes to the reduction of tetrazolium salts into colored formazans. PMS is also currently used for cytotoxicity and viability assays of cell cultures using sulfonated tetrazoliums. Under UV (340 nm) excitation, aqueous solutions of the cationic PMS show green fluorescence (λem: 526 nm), whereas the reduced hydrophobic derivative (methyl-phenazine, MPH) shows blue fluorescence (λem: 465 nm). Under UV (365 nm) excitation, cultured cells (LM2, IGROV-1, BGC-1, and 3T3-L1 adipocytes) treated with PMS (5 μg/mL, 30 min) showed cytoplasmic granules with bright blue fluorescence, which correspond to lipid droplets labeled by the lipophilic methyl-phenazine. After formaldehyde fixation blue-fluorescing droplets could be stained with oil red O. Interestingly, PMS-treated 3T3-L1 adipocytes observed under UV excitation 24 h after labeling showed large lipid droplets with a weak green emission within a diffuse pale blue-fluorescing cytoplasm, whereas a strong green emission was observed in small lipid droplets. This fluorescence change from blue to green indicates that reoxidation of methyl-phenazine to PMS can occur. Regarding cell uptake and labeling mechanisms, QSAR models predict that the hydrophilic PMS is not significantly membrane-permeant, so most PMS reduction is expected to be extracellular and associated with a plasma membrane NAD(P)H reductase. Once formed, the lipophilic and blue-fluorescing methyl-phenazine enters live cells and mainly accumulates in lipid droplets. Overall, the results reported here indicate that PMS is an excellent fluorescent probe to investigate labeling and redox dynamics of lipid droplets in cultured cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7298651PMC
http://dx.doi.org/10.1016/j.heliyon.2020.e04182DOI Listing

Publication Analysis

Top Keywords

lipid droplets
24
cultured cells
12
droplets cultured
8
phenazine methosulfate
8
pms
8
fluorescence λem
8
blue fluorescence
8
3t3-l1 adipocytes
8
green emission
8
droplets
7

Similar Publications

High temperature ameliorates high-fat diet-induced obesity by promoting ceramide breakdown in skeletal muscle tissue.

Life Metab

October 2024

Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.

Obesity is considered an epidemic often accompanied by insulin resistance (IR). Heat treatment (HT) has been shown to prevent high-fat diet-induced IR in skeletal muscle, but the underlying mechanisms are poorly understood. In this study, we discovered that high temperature alleviated the hallmarks of obesity by promoting glycogen synthesis and lowering blood glucose levels in skeletal muscle tissue (SMT).

View Article and Find Full Text PDF

Abnormal autophagy regulation is implicated in lupus and other autoimmune diseases. We investigated autophagy in the murine pristane-induced lupus model. Pristane causes monocyte/macrophage-mediated endoplasmic reticulum (ER) stress in lung endothelial cells and diffuse alveolar hemorrhage (DAH) indistinguishable from DAH in lupus patients.

View Article and Find Full Text PDF

The intricate morphology, physicochemical properties, and interacting proteins of lipid droplets (LDs) are associated with cell metabolism and related diseases. To uncover these layers of information, a solvatochromic and photosensitized LDs-targeted probe based on the furan-based D-D-π-A scaffold is developed to offer the following integrated functions. First, the turn-on fluorescence of the probe upon selectively binding to LDs allows for direct visualization of their location and morphology.

View Article and Find Full Text PDF

Cdc42 is crucial for the early regulation of hepatic stellate cell activation.

Am J Physiol Cell Physiol

January 2025

Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.

The activation of hepatic stellate cells (HSCs) from a quiescent state is a cause of liver fibrosis and a therapeutic target. HSCs are resident mesenchymal cells located in the space of Disse, exhibiting specialized morphological characteristics such as a stellate shape, large lipid droplets, and direct adhesions to hepatocytes via microprojections called HSC spines. Morphological alterations in HSCs play a crucial role in initiating their activation.

View Article and Find Full Text PDF

Mitochondrial function is crucial for hepatic lipid metabolism. Current research identifies two types of mitochondria based on their contact with lipid droplets: peridroplet mitochondria (PDM) and cytoplasmic mitochondria (CM). This work aimed to investigate the alterations of CM and PDM in metabolic dysfunction-associated steatotic liver disease (MASLD) induced by spontaneous type-2 diabetes mellitus (T2DM) in db/db mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!