Quantum-confined CsPbBr nanoplatelets (NPLs) are extremely promising for use in low-cost blue light-emitting diodes, but their tendency to coalesce in both solution and film form, particularly under operating device conditions with injected charge-carriers, is hindering their adoption. We show that employing a short hexyl-phosphonate ligand (CHOP) in a heat-up colloidal approach for pure, blue-emitting quantum-confined CsPbBr NPLs significantly suppresses these coalescence phenomena compared to particles capped with the typical oleyammonium ligands. The phosphonate-passivated NPL thin films exhibit photoluminescence quantum yields of ∼40% at 450 nm with exceptional ambient and thermal stability. The color purity is preserved even under continuous photoexcitation of carriers equivalent to LED current densities of ∼3.5 A/cm. C, Cs, and P solid-state MAS NMR reveal the presence of phosphonate on the surface. Density functional theory calculations suggest that the enhanced stability is due to the stronger binding affinity of the phosphonate ligand compared to the ammonium ligand.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7296617PMC
http://dx.doi.org/10.1021/acsenergylett.0c00935DOI Listing

Publication Analysis

Top Keywords

quantum-confined cspbbr
12
blue-emitting quantum-confined
8
cspbbr nanoplatelets
8
stable hexylphosphonate-capped
4
hexylphosphonate-capped blue-emitting
4
nanoplatelets quantum-confined
4
nanoplatelets npls
4
npls extremely
4
extremely promising
4
promising low-cost
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!