Background: Urinary tract infection (UTI) is one of the most common hospital-associated infectious. The traditional laboratory diagnosis method for UTI requires at least 24 hours, and it cannot provide the etiology basis for the clinic in time. The aim of our study is to develop a new method for pathogenic diagnosis of UTI by combining matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and UF-5000i from urine samples directly within 1 hour.
Methods: A total of 1,503 urine samples were collected from patients suggesting symptoms of UTI from August 2018 to January 2019. Each of these samples was divided into three aliquots. The first aliquot was used for conventional cleaning mid-stream urine culture; the second one for UF-5000i analysis to screen out the bacterial counts, which were more than 1×10 bacteria/mL. The third one was processed to bacterial purification and directly identified by the MALDI-TOF MS.
Results: In our study, 296 of 1,503 urine specimens were screened out by UF-5000i (bacterial pellets counts ≥10/mL). Compared the conventional culture-dependent method, the results of our methods were consistent in 249 of 263 (94.7%) cases, and they were both single-microorganism. Among 249 credible results, species-level identification (score ≥2.0) was contained 233 (233/249. 93.6%), 16 (16/249, 6.4%) samples scored between 1.7 and 1.99, and 14 (14/249, 5.6%) samples scored <1.7 or no peaks found. When there were 2 different kinds of bacteria in the urine, the result of MALDI-TOF MS was unreliable.
Conclusions: MALDI-TOF MS combined with UF-5000i to identify the pathogenic bacteria in urine directly is a novel and reliable method and saves at least 23 hours relative to the current routine conventional method. Thus its rapid and accurate detection may provide the basis of etiology for clinical diagnosis of UTIs efficiently.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290531 | PMC |
http://dx.doi.org/10.21037/atm.2019.10.73 | DOI Listing |
J Microorg Control
January 2025
Division of Microbiology, National Institute of Health Sciences.
Bovine coronavirus (BCoV), a significant cattle pathogen causing enteric and respiratory diseases, is primarily detected using reverse transcription-polymerase chain reaction. Our objective was to develop a novel detection method for BCoV by matrix-assisted laser desorption/ionization‒time-of-flight mass spectrometry (MALDI-TOF MS). Peptide mass fingerprint analysis revealed that nucleocapsid (N), membrane (M), and hemagglutinin-esterase (HE) were three main BCoV proteins.
View Article and Find Full Text PDFVet Res Commun
January 2025
Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand.
Staphylococcus pseudintermedius is a global animal pathogen. Traditional identification methods are time-consuming necessitating a more efficient approach. This study validated and enhanced the loop-mediated isothermal amplification (LAMP) technique by integration it with a lateral flow dipstick (LFD) assay for the detection of S.
View Article and Find Full Text PDFInfect Drug Resist
January 2025
Department of Laboratory Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China.
is an emerging yeast species and an opportunistic pathogen. Due to its multi-drug resistance and ability to colonize and transmit, it poses a significant risk for outbreaks in medical institutions. In this study, we report the first case of detected in a pediatric bone marrow transplant child patient in Guangxi, China.
View Article and Find Full Text PDFDes Monomers Polym
January 2025
Leibniz-Institut für Polymerforschung Dresden e.V, Dresden, Germany.
Enhancing both ionic conductivity and mechanical robustness remains a major challenge in designing solid-state electrolytes for lithium batteries. This work presents a novel approach in designing mechanically robust and highly conductive solid-state electrolytes, which involves ionic liquid-based cross-linked polymer networks incorporating polymeric ionic liquids (PILs). First, linear PILs with different side groups were synthesized for optimizing the structure.
View Article and Find Full Text PDF, a member of the Erwiniaceae family, is a rarely reported human pathogen primarily associated with plants. This study presents a documented case of catheter-related bloodstream infection caused by in a 60-year-old female receiving home parenteral nutrition. Despite presenting with only minor clinical symptoms, blood cultures from both central and peripheral sites confirmed the presence of , identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and whole-genome sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!