Pulmonary hypertension (PH) is defined as increased mean pulmonary artery pressure (mPAP) above 25 mmHg, measured at rest by right heart catheterization. The exact global prevalence of PH is difficult to estimate, mainly due to the complex aetiology, and its spread may be underestimated. To date, numerous studies on the aetiology and pathophysiology of PH at molecular level were conducted. Simultaneously, some clinical studies have shown potential usefulness of well-known and widely recognized cardiovascular biomarkers, but their potential clinical usefulness in diagnosis and management of PH is poor due to their low specificity accompanied with numerous other cardiovascular comorbidities of PH subjects. On the other hand, a large body of basic research-based studies provides us with novel molecular pathomechanisms, biomarkers, and drug targets, according to the evidence-based medicine principles. Unfortunately, the simple implementation of these results to clinical practice is impossible due to a large heterogeneity of the PH pathophysiology, where the clinical symptoms constitute only a common denominator and a final result of numerous crosstalking metabolic pathways. Therefore, future studies, based mostly on translational medicine, are needed in order to both organize better the pathophysiological classification of various forms of PH and define precisely the optimal diagnostic markers and therapeutic targets in particular forms of PH. This review paper summarizes the current state of the art regarding the molecular background of PH with respect to its current classification. Novel therapeutic strategies and potential biomarkers are discussed with respect to their limitations in use in common clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261339 | PMC |
http://dx.doi.org/10.1155/2020/7265487 | DOI Listing |
J Am Chem Soc
January 2025
Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
All-solid-state fluoride-ion batteries (FIBs) have attracted extensive attention as candidates for next-generation energy storage devices; however, promising cathodes with high energy density are still lacking. In this study, CuN is investigated as a cathode material for all-solid-state fluoride-ion batteries, which offers enough anionic vacancies around the 2-fold coordinated Cu center for F intercalation, thereby enabling a multielectron-transferred fluorination process. The contribution of both cationic and anionic redox to charge compensation, in particular, the generation of molecular nitrogen species in highly charged states, has been proved by several synchrotron-radiation-based spectroscopic technologies.
View Article and Find Full Text PDFElife
January 2025
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, United States.
Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States.
Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
Amyloidosis of the human islet amyloid polypeptide (hIAPP) is closely related to the pathogenesis of type 2 diabetes (T2D) and serves as both a diagnostic hallmark and a key therapeutic target for T2D. In this study, we discovered that oritavancin (Ori), a glycopeptide antibiotic primarily prescribed for Gram-positive bacterial infections, can dose-dependently inhibit recombinant hIAPP (rhIAPP) amyloid formation. Ori specifically inhibited rhIAPP amyloid formation at the initial nucleation stage but didn't affect mature rhIAPP fibrils.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Molecular Biology Vadi Kampüsü, Istanbul Atlas University, Anadolu Cd., No 40, Kağıthane, Istanbul, 34408, Turkey.
Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!