The present study aimed to identify the key genes that are associated with the progression of intrahepatic cholangiocarcinoma through weighted gene co-expression network analysis (WGCNA). A total of three gene datasets were downloaded from the Gene Expression Omnibus database, including GSE107943, GSE119336 and GSE26566. Differentially expressed genes (DEGs) between intrahepatic cholangiocarcinoma tissues and adjacent liver tissues were identified using GSE107943, while tissue specific genes between bile duct and liver tissues were identified using GSE26566. Following the removal of tissue-specific genes, real DEGs were used to construct the WGCNA to investigate the association between gene modules and clinical traits. Following functional analysis, pathway enrichment analysis and the construction of a protein-protein interaction (PPI) network were performed, hub genes were selected and their diagnostic value was verified in GSE119336 using a receiver operating characteristic curve. Finally, the protein levels of the hub genes were also verified in intrahepatic cholangiocarcinoma tissues. A total of 1,643 real DEGs were identified and used to construct the WGCNA. Additionally, a total of seven co-expressed gene modules were identified following WGCNA, while genes in brown and yellow modules were identified to be associated with multiple clinical traits (the number of clinical traits >3) and used as key modules. A total of 63 core key module genes were subsequently identified, and it was indicated that these genes were most enriched in the nucleus (Gene Ontology term) and the cell cycle pathway (Kyoto Encyclopedia of Genes and Genomes term). Finally, a total of eight genes, including cyclin B1, cell division cycle 20, cell division cycle associated 8, cyclin dependent kinase 1, centrosomal protein 55, kinesin family member 2C, DNA topoisomerase IIα and TPX2 microtubule nucleation factor, exhibited the highest score in PPI analysis and had a high diagnostic value for intrahepatic cholangiocarcinoma. In addition, the protein levels of these genes were also revealed to be increased in most intrahepatic cholangiocarcinoma tissues. These eight genes may be used as novel biomarkers for the diagnosis of intrahepatic cholangiocarcinoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7286119PMC
http://dx.doi.org/10.3892/ol.2020.11600DOI Listing

Publication Analysis

Top Keywords

intrahepatic cholangiocarcinoma
28
genes
14
cholangiocarcinoma tissues
12
clinical traits
12
key genes
8
genes associated
8
associated progression
8
progression intrahepatic
8
cholangiocarcinoma weighted
8
weighted gene
8

Similar Publications

Purpose: Intrahepatic cholangiocarcinoma (ICC) arises from the epithelial cells of the bile ducts present inside the liver parenchyma and is associated with an overall poor prognosis due to advanced disease stage at the time of diagnosis. We used the Centers for Disease Control and Prevention Wide-Ranging Online Data for Epidemiologic Research (CDC WONDER) database to determine ICC-related mortality patterns in the United States from 1999 till 2020.

Methods: Age-adjusted mortality rates (AAMR) and crude mortality rates (CMR) were extracted from the CDC WONDER database.

View Article and Find Full Text PDF

Intrahepatic cholangiocarcinoma (iCCA) is an aggressive liver malignancy that arises from second-order biliary epithelial cells. Its incidence is gradually increasing worldwide. Well-known risk factors have been described, although in many cases, they are not identifiable.

View Article and Find Full Text PDF

Background: Cuproptosis is a unique form of cell death that is dependent on copper, which is fundamentally different from other recognized forms of cell death. However, the molecular and immune characteristics in cuproptosis-defined subgroups of cholangiocarcinoma (CCA) remain to be further illustrated.

Methods: We conducted a comprehensive investigation into the genetic and transcriptional variation, prognostic significance, and expression profiles of 16 cuproptosis-related genes (CRGs).

View Article and Find Full Text PDF

HNF4α inhibits the malignancy of intrahepatic cholangiocarcinoma by suppressing the Wnt signaling pathway.

Transl Oncol

January 2025

Department of Gastroenterology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China. Electronic address:

Previous studies have demonstrated that intrahepatic cholangiocarcinoma (ICC) may derive from transdifferentiation of hepatocytes, so transforming ICC cells into hepatocytes could be a potential strategy for treating ICC. Hepatocyte nuclear factor 4α (HNF4α), a master transcription factor in the liver, has been demonstrated to induce the differentiation of hepatocellular carcinoma, while its effects on ICC remains unclear. Ivosidenib, an isocitrate dehydrogenase 1 (IDH1) inhibitor, is a novel targeted drug for ICC patients.

View Article and Find Full Text PDF

Point-of-care ultrasound in the diagnosis of hepatic gas gangrene.

J Ultrasound

January 2025

Argentinian Critical Care Ultrasonography Association (ASARUC), Buenos Aires, Argentina.

Hepatic gas gangrene (HGG) is a rare but life-threatening condition typically caused by anaerobic bacteria such as Clostridium perfringens, though Gram-negative bacteria like Escherichia coli and Klebsiella species have also been implicated. Traditionally diagnosed via computed tomography (CT), point-of-care ultrasound (POCUS) has emerged as a valuable tool in critical care settings for its non-invasive, bedside utility. We report the case of a 51-year-old female with choledochal syndrome secondary to cholangiocarcinoma who developed HGG following left extended hepatectomy and biliary reconstruction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!