Triple negative breast cancer (TNBC) is a poor outcome subset of breast cancers characterised by the lack of expression of ER , PR, and HER2 amplification. It is a heterogeneous group of cancers which fail to derive benefit from modern, more targeted treatments such as Tamoxifen and Herceptin. Current standard of care (SoC) is cytotoxic chemotherapy, which is effective for some patients, with other patients deriving little/no benefit and lacking alternative treatments. This study has identified the glucocorticoid receptor (GR) as a potential predictive biomarker of response to anthracycline-based chemotherapy in triple negative breast cancer (TNBC). GR gene expression levels in patient samples were analysed through publicly available microarray datasets as well as protein expression through immunohistochemistry (IHC) and correlated with clinical/pathological outcomes, including survival. While the results confirmed previous observations that high GR expression is associated with poor outcome in response to taxane-based chemotherapy, this study shows for the first time that high GR expression is associated with improved outcomes in the context of anthracycline-based chemotherapy. GR therefore has the potential to be used as a predictive biomarker to guide treatment choices and ensure that patients derive the greatest benefit from first line treatment, avoiding unnecessary costs, side effects, and disease progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256765 | PMC |
http://dx.doi.org/10.1155/2020/3712825 | DOI Listing |
Cell Mol Biol Lett
January 2025
Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy.
Breast cancer is the most commonly diagnosed type of cancer and the leading cause of cancer-related death in women worldwide. Highly targeted therapies have been developed for different subtypes of breast cancer, including hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, triple-negative breast cancer (TNBC) and metastatic breast cancer disease are primarily treated with chemotherapy, which improves disease-free and overall survival, but does not offer a curative solution for these aggressive forms of breast cancer.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA.
Nowadays, chemotherapy and immunotherapy remain the major treatment strategies for Triple-Negative Breast Cancer (TNBC). Identifying biomarkers to pre-select and subclassify TNBC patients with distinct chemotherapy responses is essential. In the current study, we performed an unbiased Reverse Phase Protein Array (RPPA) on TNBC cells treated with chemotherapy compounds and found a leading significant increase of phosphor-AURKA/B/C, AURKA, AURKB, and PLK1, which fall into the mitotic kinase group.
View Article and Find Full Text PDFMatrix Biol
January 2025
Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC. Electronic address:
Collagen stroma interactions within the extracellular microenvironment of breast tissue play a significant role in breast cancer, including risk, progression, and outcomes. Hydroxylation of proline (HYP) is a common post-translational modification directly linked to breast cancer survival and progression. Changes in HYP status lead to alterations in epithelial cell signaling, extracellular matrix remodeling, and immune cell recruitment.
View Article and Find Full Text PDFMol Metab
January 2025
Department of Biological Chemistry, University of California, Irvine School of Medicine. Electronic address:
Objectives: Many cancer cells depend on exogenous methionine for proliferation, whereas non-tumorigenic cells can divide in media supplemented with the metabolic precursor homocysteine. This phenomenon is known as methionine dependence of cancer or methionine addiction. The underlying mechanisms driving this cancer-specific metabolic addiction are poorly understood.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:
Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!