Introduction: Screening compounds for activity on the hERG channel using patch clamp is a crucial part of safety testing. Automated patch clamp (APC) is becoming widely accepted as an alternative to manual patch clamp in order to increase throughput whilst maintaining data quality. In order to standardize APC experiments, we have investigated the effects on IC values under different conditions using several devices across multiple sites.

Methods: APC instruments SyncroPatch 384i, SyncroPatch 384PE and Patchliner, were used to record hERG expressed in HEK or CHO cells. Up to 27 CiPA compounds were used to investigate effects of voltage protocol, incubation time, labware and time between compound preparation and experiment on IC values.

Results: All IC values of 21 compounds recorded on the SyncroPatch 384PE correlated well with IC values from the literature (Kramer et al., 2013) regardless of voltage protocol or labware, when compounds were used immediately after preparation, but potency of astemizole decreased if prepared in Teflon or polypropylene (PP) compound plates 2-3 h prior to experiments. Slow acting compounds such as dofetilide, astemizole, and terfenadine required extended incubation times of at least 6 min to reach steady state and therefore, stable IC values.

Discussion: Assessing the influence of different experimental conditions on hERG assay reliability, we conclude that either the step-ramp protocol recommended by CiPA or a standard 2-s step-pulse protocol can be used to record hERG; a minimum incubation time of 5 min should be used and although glass, Teflon, PP or polystyrene (PS) compound plates can be used for experiments, caution should be taken if using Teflon, PS or PP vessels as some adsorption can occur if experiments are not performed immediately after preparation. Our recommendations are not limited to the APC devices described in this report, but could also be extended to other APC devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vascn.2020.106884DOI Listing

Publication Analysis

Top Keywords

patch clamp
16
automated patch
8
syncropatch 384pe
8
record herg
8
voltage protocol
8
incubation time
8
compound plates
8
apc devices
8
compounds
5
apc
5

Similar Publications

Chronic Rapamycin Prevents Electrophysiological and Morphological Alterations Produced by Conditional Pten Deletion in Mouse Cortex.

Cells

January 2025

IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.

Abnormalities in the mammalian target of the rapamycin (mTOR) pathway have been implicated in numerous developmental brain disorders. While the molecular and histological abnormalities have been described, less is known about alterations in membrane and synaptic excitability with chronic changes in the mTOR pathway. In the present study, we used a conditional mouse model with a deletion of the phosphatase and tensin homologue (Pten, a negative regulator of mTOR) from cortical pyramidal neurons (CPNs).

View Article and Find Full Text PDF

Molecular Mechanisms of Nicergoline from Ergot Fungus in Blocking Human 5-HT3A Receptor.

J Microbiol Biotechnol

November 2024

Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju 61186, Republic of Korea.

This study investigates the modulatory effects of nicergoline, a major bioactive compound derived from ergot fungus, on the 5-hydroxytryptamine 3A (5-HT3A) receptor. Utilizing a two-electrode voltage-clamp technique, we evaluated the impact of nicergoline on the 5-HT-induced inward current (I) in 5-HT3A receptors. Our findings reveal that nicergoline inhibits I in a reversible and concentration-dependent manner.

View Article and Find Full Text PDF

Deregulated ion channels contribute to RHOBTB2-associated developmental and epileptic encephalopathy.

Hum Mol Genet

January 2025

Department of Human Genetics, Inselspital Bern, University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland.

While de novo missense variants in the BTB domains of atypical RhoGTPase RHOBTB2 cause a severe developmental and epileptic encephalopathy, de novo missense variants in the GTPase domain or bi-allelic truncating variants are associated with more variable neurodevelopmental and seizure phenotypes. Apart from the observation of RHOBTB2 abundance resulting from BTB-domain variants and increased seizure susceptibility in Drosophila overexpressing RhoBTB, our knowledge on RHOBTB2-related pathomechanisms is limited. We now found enrichment for ion channels among the differentially expressed genes from RNA-Seq on fly heads overexpressing RhoBTB.

View Article and Find Full Text PDF

Background And Aim: Human dental pulp stem cells (hDPSCs) constitute a promising alternative for central nervous system (CNS) cell therapy. Unlike other human stem cells, hDPSCs can be differentiated, without genetic modification, to neural cells that secrete neuroprotective factors. However, a better understanding of their real capacity to give rise to functional neurons and integrate into synaptic networks is still needed.

View Article and Find Full Text PDF

Low-dose quinine targets KCNH6 to potentiate glucose-induced insulin secretion.

J Mol Cell Biol

January 2025

Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

Insulin secretion is mainly regulated by two electrophysiological events, depolarization initiated by the closure of ATP-sensitive K+ (KATP) channels and repolarization mediated by K+ efflux. Quinine, a natural component commonly used for the treatment of malaria, has been reported to directly stimulate insulin release and lead to hypoglycemia in patients during treatment through inhibiting KATP channels. In this study, we verified the insulinotropic effect of quinine on the isolated mouse pancreatic islets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!