Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We derive an analytical connection between kinetic relaxation rate and bulk viscosity of a relativistic fluid in spatial dimensions, all the way from the ultra-relativistic down to the near non-relativistic regime. Our derivation is based on both Chapman-Enskog asymptotic expansion and Grad's method of moments. We validate our theoretical results against a benchmark flow, providing further evidence of the correctness of the Chapman-Enskog approach; we define the range of validity of this approach and provide evidence of mounting departures at increasing Knudsen number. Finally, we present numerical simulations of transport processes in quark-gluon plasmas, with special focus on the effects of bulk viscosity which might prove amenable to future experimental verification. This article is part of the theme issue 'Fluid dynamics, soft matter and complex systems: recent results and new methods'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333951 | PMC |
http://dx.doi.org/10.1098/rsta.2019.0409 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!