A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HucMSC-exosomes carrying miR-326 inhibit neddylation to relieve inflammatory bowel disease in mice. | LitMetric

HucMSC-exosomes carrying miR-326 inhibit neddylation to relieve inflammatory bowel disease in mice.

Clin Transl Med

Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P. R. China.

Published: June 2020

Background: Inflammatory bowel disease (IBD) is a group of chronic intestinal inflammation that is a risk factor for many gastrointestinal cancers. Exosomes are gradually gaining attention as an emerging treatment method for IBD due to their important biological characteristics. NF-κB is an important pro-inflammatory transcription factor kept inactive by IκB protein in the cytoplasm by masking the nuclear localization signal of NF-κB. The deterioration of IκB is mainly ubiquitination, and this depends on neddylation.

Methods: In this study, we established a dextran sulfate sodium (DSS)-induced IBD model in BABL/C mice to evaluate the effect of human umbilical cord mesenchymal stem cell-derived exosomes (hucMSC-exosomes, hucMSC-Ex) on the repair of IBD. At the same time, human colorectal mucosa cells (FHC) were stimulated by LPS (lipopolysaccharide) in vitro to activate the inflammatory environment to study the mechanism of hucMSC-Ex regulating neddylation. The microRNA (miRNA) obtained by sequencing and transfection with hucMSC-Ex was used to verify the role of miR-326/neddylation/IκB/NF-κB signaling pathway in IBD repair.

Results: HucMSC-Ex inhibited the process of neddylation in relieving DSS-induced IBD in mice. The binding of NEDD8 (neural precursor cell-expressed, developmentally downregulated gene 8) to cullin 1 and the activation of NF-κB signaling pathway were suppressed along with reduced expression levels of neddylation-related enzyme molecules. The same phenomenon was observed in FHC cells. The miRNA comparison results showed that miR-326 was highly expressed in hucMSC-Ex and played an important role in inhibiting the neddylation process. The therapeutic effect of hucMSC-Ex with high expression of miR-326 on IBD mice was significantly stronger than that of ordinary hucMSC-Ex.

Conclusions: HucMSC-Ex relieves DSS-induced IBD in a mouse model by inhibiting neddylation through miR-326.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403704PMC
http://dx.doi.org/10.1002/ctm2.113DOI Listing

Publication Analysis

Top Keywords

dss-induced ibd
12
inflammatory bowel
8
bowel disease
8
ibd
8
signaling pathway
8
ibd mice
8
inhibiting neddylation
8
hucmsc-ex
7
neddylation
5
hucmsc-exosomes carrying
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!