Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
External validation is a prerequisite in order for a prediction model to be introduced into clinical practice. Nonetheless, methodologically intact external validation studies are a scarce finding. Utilization of big datasets can help overcome several causes of methodological failure. However, transparent reporting is needed to standardize the methods, assess the risk of bias and synthesize multiple validation studies in order to infer model generalizability. We describe the methodological challenges faced when using multiple big datasets to perform the first retrospective external validation study of the Prospective Comparison of Methods for thromboembolic risk assessment with clinical Perceptions and AwareneSS in real life patients-Cancer Associated Thrombosis (COMPASS-CAT) Risk Assessment Model for predicting venous thromboembolism in patients with cancer. The challenges included choosing the starting point, defining time sensitive variables that serve both as risk factors and outcome variables and using non-research oriented databases to form validated definitions from administrative codes. We also present the structured plan we used so as to overcome those obstacles and reduce bias with the target of producing an external validation study that successfully complies with prediction model reporting guidelines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11239-020-02191-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!