Background: Mucopolysaccharidoses (MPS) are a group of rare, inherited metabolic diseases that result from a deficiency in one of several lysosomal enzymes essential for stepwise glycosaminoglycan (GAG) degradation, leading to GAG accumulation and widespread cellular pathology and clinical disease. Although disease presentation is heterogeneous, the clinical hallmarks are largely comparable across several MPS subtypes. Extensive data have shown that the level of urinary GAG (uGAG) excretion above normal is strongly correlated with disease severity and clinical outcomes in MPS diseases. Thus, change in uGAG excretion may have significant value as a potential primary endpoint in clinical trials of MPS diseases that are too rare to study using traditional clinical endpoints.

Methods: A retrospective medical chart review was undertaken of patients with MPS I, II, and VI who had been treated long term with enzyme replacement therapy (ERT). The relationship between uGAG reduction and clinical outcomes relevant to the major clinical manifestations of these MPS diseases was evaluated. A multi-domain responder index (MDRI) score was calculated, measuring the following 4 domains: 6-min walk test, pulmonary function, growth rate, and Clinician Global Impression of Change. For each domain, a minimal important difference (MID) was defined based on published information of these outcome measures in MPS and other diseases.

Results: Of the 50 patients evaluated, 18 (36%) had MPS I, 23 (46%) had MPS II, and 9 (18%) had MPS VI. Forty-two were clinical practice patients and 8 had participated in clinical trials. Across all MPS subtypes, the mean (± SD) uGAG level at baseline was 66.0 ± 51.5 mg/mmol creatinine (n = 48) and there was a mean reduction of 54.6% following ERT. Analysis of the MDRI score based on the MID defined for each domain showed a greater magnitude of improvement in patients with increased uGAG reduction when compared with those patients with lower uGAG reduction for all assessed uGAG thresholds, and a trend toward a higher likelihood of positive mean MDRI score in patients with a uGAG reduction ≥40%.

Conclusions: In this retrospective study, uGAG reduction was associated with long-term clinical outcomes as assessed by a number of approaches, supporting the use of uGAG reduction as a biomarker primary endpoint.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymgme.2020.06.004DOI Listing

Publication Analysis

Top Keywords

ugag reduction
24
clinical outcomes
16
mps diseases
12
mdri score
12
clinical
11
mps
11
ugag
10
chart review
8
long-term clinical
8
enzyme replacement
8

Similar Publications

Background: Mucopolysaccharidosis VII (MPS VII) is an ultra-rare, autosomal recessive, debilitating, progressive lysosomal storage disease caused by reduced activity of β-glucuronidase (GUS) enzyme. Vestronidase alfa (recombinant human GUS) intravenous enzyme replacement therapy is an approved treatment for patients with MPS VII.

Methods: This disease monitoring program (DMP) is an ongoing, multicenter observational study collecting standardized real-world data from patients with MPS VII (N ≈ 50 planned) treated with vestronidase alfa or any other management approach.

View Article and Find Full Text PDF

Mucopolysaccharidosis (MPS) VII is an ultra-rare, autosomal-recessive, metabolic disease caused by a deficiency of β-glucuronidase, a lysosomal enzyme that hydrolyzes glycosaminoglycans (GAGs), including dermatan sulfate (DS), chondroitin sulfate, and heparan sulfate (HS). β-glucuronidase deficiency leads to progressive accumulation of undegraded GAGs in lysosomes of affected tissues, which may cause hydrops fetalis, short stature, hepatosplenomegaly, and cognitive impairment. An open-label, multicenter, phase II study was conducted in 8 pediatric subjects <5 years of age with MPS VII.

View Article and Find Full Text PDF

Background: Mucopolysaccharidoses (MPS) are a group of rare, inherited metabolic diseases that result from a deficiency in one of several lysosomal enzymes essential for stepwise glycosaminoglycan (GAG) degradation, leading to GAG accumulation and widespread cellular pathology and clinical disease. Although disease presentation is heterogeneous, the clinical hallmarks are largely comparable across several MPS subtypes. Extensive data have shown that the level of urinary GAG (uGAG) excretion above normal is strongly correlated with disease severity and clinical outcomes in MPS diseases.

View Article and Find Full Text PDF

Accumulations of glycosaminoglycans (GAGs) that result from deficiencies in lysosomal hydrolases are characteristic of mucopolysaccharidoses (MPS). Enzyme replacement therapies (ERTs) are now available for several MPS diseases (MPS I, MPS II, MPS IVA, MPS VI, and MPS VII), but assessment of the efficacy of treatment can be challenging because these are rare, progressive, and highly heterogeneous diseases; because some clinical manifestations may be irreversible if treatment initiation is delayed; and because determining the benefits of a treatment to prevent those manifestations may take prolonged periods of time. In addition to accumulation of GAGs in tissues, elevated urinary GAG (uGAG) levels are evident and are reduced rapidly after initiation of ERT.

View Article and Find Full Text PDF

Allogeneic hematopoietic cell transplantation (HCT) benefits children with Hurler syndrome (MPS-IH). However, survivors remain burdened by substantial MPS-IH related residual disease. We studied the feasibility, safety and biochemical impact of augmentative recombinant intravenous enzyme replacement therapy (IV-ERT) post transplantation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!