A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transcriptomics reveal high regulatory diversity of drought tolerance strategies in a biennial oil crop. | LitMetric

Transcriptomics reveal high regulatory diversity of drought tolerance strategies in a biennial oil crop.

Plant Sci

Department of Plant Breeding, Justus Liebig University, IFZ Research Centre for Biosystems, Land Use and Nutrition, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany. Electronic address:

Published: August 2020

Spring droughts are expected to become more frequent in Central Europe as a result of climate change. Their coincidence with flowering of biennial crops like winter oilseed rape (Brassica napus) can cause major impact for yield development. However, no data is available on the diversity of genetic regulation of drought tolerance during this stage under realistic conditions. Here, we assessed the phenotypic plasticity of drought response for eight diverse B. napus accessions under field-like conditions and linked their stress response to gene and miRNA expression during early and late stress. We observed highly diverse responses, both on the phenotypic and on the gene expression level. Our data suggest that drought tolerant accessions have more effective molecular protection mechanisms like ROS scavenging, source/sink ratio and regulation of developmental timing, compared to otherwise phenotypically similar accessions. Bna.MAP3K13.C05 expression was found to be protective independently of the tolerance mechanism, indicating cross-talk to nitrogen signaling. Moreover, we identified putative miRNA genes in the B. napus genome which respond to stress and may also be involved in protective mechanisms, representing possible breeding targets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2020.110515DOI Listing

Publication Analysis

Top Keywords

drought tolerance
8
transcriptomics reveal
4
reveal high
4
high regulatory
4
regulatory diversity
4
drought
4
diversity drought
4
tolerance strategies
4
strategies biennial
4
biennial oil
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!