The phytotoxicity caused by 500 μM ZnSO.7HO and its detoxifying by co-application of 100 μM of MT melatonin (MT) and glutathione (GSH) in 6-week-old safflower plants have been investigated. Reduced biomass production and total chlorophyll content on the one hand and increased content of hydrogen peroxide (HO), malondialdehyde (MDA) with increase in lipoxygenase activity, on the other hand, showed Zn- induced oxidative damage in safflower seedlings. When MT, GSH and especially MT + GSH exogenously were applied to Zn-stressed seedlings, the content of HO, MDA and the activity of lipoxygenase considerably decreased. In Zn- treated seedlings, the application of these signaling molecules led to a considerable increment in ascorbate (ASC), GSH and phytochelatin (PC) contents along with the induction of activity of antioxidant enzymes including ascorbate-glutathione cycle enzymes when compared with the plants stressed with Zn only. In Zn-stressed safflower seedlings treated with MT, GSH and MT + GSH, decreased activity of enzymes involved in glyoxalase system may be associated with the role of MT and GSH in reducing Zn uptake and reducing Zn-induced toxicity and subsequently, lower plant's defense responses. The data showed that the effects of MT and GSH, in particular, the combination of these two molecules in reducing Zn uptake and diminishing its accumulation in the shoots of safflower seedlings, and also the participation of MT and GSH on increasing plant ability to tolerate high amount of Zn through stimulation of various antioxidant defense systems suggest them as suitable candidates to better the survival of safflower in soils contaminated with Zn excess.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.110853DOI Listing

Publication Analysis

Top Keywords

safflower seedlings
12
melatonin glutathione
8
gsh mt + gsh
8
reducing uptake
8
gsh
7
safflower
6
seedlings
6
effects exogenous
4
exogenous melatonin
4
glutathione zinc
4

Similar Publications

Fruit traits of different variants of Zanthoxylum planispinum var. dingtanensis in the karst plateau valley area of Guizhou Province, Southwest China.

BMC Plant Biol

November 2024

School of Karst Science, State Engineering Technology Institute for Karst Decertification Control, Guizhou Normal University, Guiyang, Guizhou, 550001, China.

Background: Many studies have shown that seed traits, which are among the most important plant traits, can be inherited stably, a finding which is of great value for the improvement of seed germination, seed propagation, seedling establishment, plant breeding, and ecological restoration. The differences in phenotype and nutritional traits and their interactions in Zanthoxylum planispinum var. dingtanensis were ascertained, and the nutrient input rule and the strategy of resource balancing were analyzed in order to provide a scientific basis for the screening of improved variants of the test plant.

View Article and Find Full Text PDF

Seed storage underpins global agriculture and the seed trade and revealing the mechanisms of seed aging is essential for enhancing seed longevity management. Safflower is a multipurpose oil crop, rich in unsaturated fatty acids that are at high risk of peroxidation as a contributory factor to seed aging. However, the molecular mechanisms responsible for safflower seed viability loss are not yet elucidated.

View Article and Find Full Text PDF

Regulation of dormancy break and germination of safflower seeds: the role of GA3, light and cold temperatures.

Braz J Biol

November 2023

Universidade Federal da Grande Dourados - UFGD, Faculdade de Ciências Agrárias, Dourados, MS, Brasil.

The safflower crop is considered a great alternative for crop rotation since drought tolerance and low production cost are attractive for its choice. However, safflower seeds show dormancy soon after dispersal from the mother plant, making it difficult to successfully establish plants using newly harvested seeds. The influence of temperature, gibberellin and light/dark on dormancy break of safflower seeds during storage were investigated.

View Article and Find Full Text PDF

Heavy metals are chemical elements with high density that can be toxic or poisonous even at low concentrations. They are widely distributed in the environment due to industrial activities, mining, pesticide use, automotive emissions and domestic wastes. This study aimed to investigate the toxic effects of copper (Cu) heavy metal on safflower plants in terms of genetic and epigenetic parameters.

View Article and Find Full Text PDF

During seed aging, there is a critical node (CN) where the population viability drops sharply. Exploring the specific locations of the CN in different species of plants is crucial for understanding the biological storage properties of seeds and refining seed life span management. Safflower, a bulk oil crop that relies on seeds for propagation, has a short seed life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!